login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348211
Triangle read by rows giving coefficients of polynomials arising as numerators of certain Hilbert series.
4
1, 1, 1, 1, 3, 1, 1, 11, 11, 1, 1, 31, 90, 31, 1, 1, 85, 554, 554, 85, 1, 1, 225, 2997, 6559, 2997, 225, 1, 1, 595, 15049, 62755, 62755, 15049, 595, 1, 1, 1576, 72496, 527911, 985758, 527911, 72496, 1576, 1, 1, 4203, 341166, 4094762, 12956604, 12956604, 4094762, 341166, 4203, 1
OFFSET
3,5
COMMENTS
This corrects 544 -> 554 in row 8 of A013561.
Write the g.f. of row n of A348210 as a rational polynomial nu(x)/(1-x)^(n-2). The triangle contains the coefficients [x^k] nu(x) in row n.
LINKS
D.-N. Verma, Towards Classifying Finite Point-Set Configurations, 1997, Unpublished. [Scanned copy of annotated version of preprint given to me by the author in 1997. - N. J. A. Sloane, Oct 04 2021]
FORMULA
Sum_{k=0..n-3} T(n, k) = A012249(n-2) (row sums).
From G. C. Greubel, Feb 28 2024: (Start)
T(n, k) = [x^k]( (1-x)^(n-2) * Sum_{k=0..n-3} A(n,k)*x^k ), where A(n,k) is the array of A348210.
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 11, 11, 1;
1, 31, 90, 31, 1;
1, 85, 554, 554, 85, 1;
1, 225, 2997, 6559, 2997, 225, 1;
1, 595, 15049, 62755, 62755, 15049, 595, 1;
1, 1576, 72496, 527911, 985758, 527911, 72496, 1576, 1;
MAPLE
read("transforms"):
A348211_row := proc(n)
local x, b, opoly ;
opoly := n-2 ;
[seq(A348210(n, k), k=0..opoly-1)] ;
b := BINOMIALi(%) ;
add( op(i, b)*x^(i-1)*(1-x)^(opoly-i), i=1..nops(b)) ;
seq( coeff(%, x, i), i=0..opoly-1) ;
end proc:
for n from 3 to 12 do
print(A348211_row(n)) ;
end do: # R. J. Mathar, Oct 10 2021
MATHEMATICA
A348210[n_, k_] := (-1/2)*Sum[(-1)^j*Binomial[n, j]* Binomial[(n-2*j)*k+n-j-2, n-3], {j, 0, Floor[(n-1)/2]}];
row[n_] := Switch[n, 3, {1}, 4, {1, 1}, _, FindGeneratingFunction[Table[A348210[n, k], {k, 0, n-2}], x] // Numerator // CoefficientList[#, x]& // Abs];
Table[row[n], {n, 3, 12}] // Flatten (* Jean-François Alcover, Apr 23 2023 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 50);
A:= func< n, k | (&+[(-1)^(j+1)*Binomial(n, j)*Binomial((n-2*j)*k+n-j-2, n-3)/2 : j in [0..Floor((n-1)/2)]]) >; // A=A348210
p:= func< n, x | (1-x)^(n-2)*(&+[A(n, k)*x^k: k in [0..n]]) >;
A348211:= func< n, k | Coefficient(R!( p(n, x) ), k) >;
[A348211(n, k): k in [0..n-3], n in [3..15]]; // G. C. Greubel, Feb 28 2024
(SageMath)
def A(n, k): return sum( (-1)^(j+1)*binomial(n, j)*binomial((n-2*j)*k+n-j-2, n-3) for j in range(1+(n-1)//2) )/2 # A = A348210
def p(n, x): return (1-x)^(n-2)*sum( A(n, k)*x^k for k in range(n+1) )
def A348211(n, k): return ( p(n, x) ).series(x, n+1).list()[k]
flatten([[A348211(n, k) for k in range(n-2)] for n in range(3, 17)]) # G. C. Greubel, Feb 28 2024
CROSSREFS
Cf. A012249 (row sums), A013561, A013630.
Sequence in context: A256895 A223256 A013561 * A176468 A176421 A168552
KEYWORD
tabl,nonn
AUTHOR
R. J. Mathar, Oct 07 2021
STATUS
approved