login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176469
A symmetrical triangle:q=4;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1
0
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, -8, -126, -8, 1, 1, -103, -4114, -4114, -103, 1, 1, -642, -82549, -353256, -82549, -642, 1, 1, -3281, -1430195, -23948889, -23948889, -1430195, -3281, 1, 1, -15292, -23527496, -1548356796, -6216938526
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 4, 8, -140, -8432, -519636, -50764728, -9360737692, -3387701237632,
-246332974040099,...}.
FORMULA
q=4;
c(n,q)=Product[1 - q^i, {i, 1, n}];
t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, -8, -126, -8, 1},
{1, -103, -4114, -4114, -103, 1},
{1, -642, -82549, -353256, -82549, -642, 1},
{ 1, -3281, -1430195, -23948889, -23948889, -1430195, -3281, 1},
{1, -15292, -23527496, -1548356796, -6216938526, -1548356796, -23527496, -15292, 1},
{1, -67707, -380011248, -99256044576, -1594214495286, -1594214495286, -99256044576, -380011248, -67707, 1},
{1, -290486, -6099252663, -6353979629820, -408235051426002, -1634139479203056, -408235051426002, -6353979629820, -6099252663, -290486, 1}
MATHEMATICA
(*A060187*);
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
CROSSREFS
Sequence in context: A124975 A171246 A129439 * A141542 A364812 A129453
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Apr 18 2010
STATUS
approved