login
A176469
A symmetrical triangle:q=4;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1
0
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, -8, -126, -8, 1, 1, -103, -4114, -4114, -103, 1, 1, -642, -82549, -353256, -82549, -642, 1, 1, -3281, -1430195, -23948889, -23948889, -1430195, -3281, 1, 1, -15292, -23527496, -1548356796, -6216938526
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 4, 8, -140, -8432, -519636, -50764728, -9360737692, -3387701237632,
-246332974040099,...}.
FORMULA
q=4;
c(n,q)=Product[1 - q^i, {i, 1, n}];
t(n,m,q)=A060187(n,m)-c(n,q)/(c(m,q)*c(n-m,q))+1
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, 3, 3, 1},
{1, -8, -126, -8, 1},
{1, -103, -4114, -4114, -103, 1},
{1, -642, -82549, -353256, -82549, -642, 1},
{ 1, -3281, -1430195, -23948889, -23948889, -1430195, -3281, 1},
{1, -15292, -23527496, -1548356796, -6216938526, -1548356796, -23527496, -15292, 1},
{1, -67707, -380011248, -99256044576, -1594214495286, -1594214495286, -99256044576, -380011248, -67707, 1},
{1, -290486, -6099252663, -6353979629820, -408235051426002, -1634139479203056, -408235051426002, -6353979629820, -6099252663, -290486, 1}
MATHEMATICA
(*A060187*);
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] := f[n, m] - c[n, q]/(c[m, q]*c[n - m, q]) + 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
CROSSREFS
Sequence in context: A124975 A171246 A129439 * A141542 A364812 A129453
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Apr 18 2010
STATUS
approved