login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364812
Triangle of generalized binomial coefficients T(n,k) = ff(n)/(ff(k)*ff(n-k)) where ff(n) = A363838(n), the generalized factorial.
1
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 16, 24, 16, 1, 1, 5, 40, 40, 5, 1, 1, 36, 90, 480, 90, 36, 1, 1, 7, 126, 210, 210, 126, 7, 1, 1, 256, 896, 10752, 3360, 10752, 896, 256, 1, 1, 81, 10368, 24192, 54432, 54432, 24192, 10368, 81, 1, 1, 100, 4050, 345600, 151200, 1088640, 151200, 345600, 4050, 100, 1
OFFSET
0,5
LINKS
Michel Marcus, Table of n, a(n) for n = 0..5150 (Rows n=0..100 flattened).
Jeffrey C. Lagarias and Wijit Yangjit, The factorial function and generalizations, extended, arXiv:2310.12949 [math.NT], 2023. See Table 3 p. 30.
FORMULA
T(n,k) = A363838(n)/(A363838(k)*A363838(n-k)).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 16, 24, 16, 1;
1, 5, 40, 40, 5, 1;
1, 36, 90, 480, 90, 36, 1;
...
PROG
(PARI)
f(n, b) = sum(i=1, logint(n, b), n\b^i);
ff(n) = prod(b=2, n, b^f(n, b)); \\ A363838
T(n, k) = ff(n)/(ff(k)*ff(n-k));
row(n) = vector(n+1, k, T(n, k-1));
CROSSREFS
Sequence in context: A129439 A176469 A141542 * A129453 A129455 A329322
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Oct 21 2023
STATUS
approved