login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364811
Number of distinct residues x^4 (mod 2^n), x=0..2^n-1.
2
1, 2, 2, 2, 2, 4, 6, 10, 18, 36, 70, 138, 274, 548, 1094, 2186, 4370, 8740, 17478, 34954, 69906, 139812, 279622, 559242, 1118482, 2236964, 4473926
OFFSET
0,2
COMMENTS
For n>=4, A319281(a(n)) == 2^n + [(n mod 4)>0].
It appears that for n>4: a(n)=2*a(n-1)-2*[(n mod 4)==2]; a(n) = ceiling(2^n/15) - [(n mod 4)==0] + 1.
MATHEMATICA
a[n_]:=CountDistinct[Table[PowerMod[x-1, 4, 2^(n-1)], {x, 1, 2^(n-1)}]]; Array[a, 24]
PROG
(PARI) a(n) = #Set(vector(2^(n-1), x, Mod(x-1, 2^(n-1))^4))
(Python)
def A364811(n): return len({pow(x, 4, 1<<n) for x in range(1<<n)}) # Chai Wah Wu, Sep 17 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Albert Mukovskiy, Sep 14 2023
STATUS
approved