



2, 4, 9, 12, 22, 18, 38, 16, 93, 45, 62, 70, 44, 63, 36, 52, 64, 102, 48, 68, 84, 76, 90, 142, 146, 117, 81, 166, 174, 178, 126, 80, 150, 132, 116, 230, 124, 100, 156, 246, 266, 258, 254, 148, 112
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

My 1981 publication studies A064380 with the quite natural convention A064380(1)=1. So a(1) could alternatively be defined as 1. By the definitions, it is clear that A064380(m) >= A000010(m).
Theorem. For every n>=0, the equation A064380(m)A000010(m)=n has infinitely many solutions.


REFERENCES

V. S. Abramovich(Shevelev), On an analog of the Euler function, Proceeding of the NorthCaucasus Center of the Academy of Sciences of the USSR (Rostov na Donu), 2 (1981), 1317.
V. S. Shevelev, Multiplicative functions in the FermiDirac arithmetic, Izvestia Vuzov of the NorthCaucasus region, Nature sciences 4 (1996), 2843.


LINKS

Amiram Eldar, Table of n, a(n) for n = 0..1000
S. Litsyn and V. S. Shevelev, On factorization of integers with restrictions on the exponent, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 136.


MAPLE

A176472 := proc(n) local m; for m from 2 do if A064380(m)  numtheory[phi](m) = n then return m; end if; end do: end proc: # R. J. Mathar, Jun 16 2010


CROSSREFS

Cf. A000010, A064380, A050376, A050292.
Sequence in context: A092530 A154891 A282456 * A139557 A103690 A098009
Adjacent sequences: A176469 A176470 A176471 * A176473 A176474 A176475


KEYWORD

nonn


AUTHOR

Vladimir Shevelev, Apr 18 2010


EXTENSIONS

a(2), a(3), a(8) and a(15) corrected and sequence extended by R. J. Mathar, Jun 16 2010


STATUS

approved



