login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064326
Generalized Catalan numbers C(-4; n).
3
1, 1, -3, 25, -251, 2817, -33843, 425769, -5537835, 73865617, -1004862179, 13888533561, -194475377243, 2752994728225, -39333541106835, 566464908534345, -8214515461250955, 119845125957958065, -1757855400878129475, 25906894146115000665, -383443906519878272955
OFFSET
0,3
COMMENTS
See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references.
LINKS
FORMULA
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-4)^m/n.
a(n) = (1/5)^n*(1 + 4*Sum_{k=0..n-1} C(k)*(-4*5)^k), n >= 1, a(0) = 1; with C(n) = A000108(n) (Catalan).
G.f.: (1+4*x*c(-4*x)/5)/(1-x/5) = 1/(1-x*c(-4*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = hypergeometric([1-n, n], [-n], -4) for n > 0. - Peter Luschny, Nov 30 2014
MATHEMATICA
CoefficientList[Series[(9 +Sqrt[1+16*x])/(2*(5-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
PROG
(Sage)
def a(n):
if n==0: return 1
return hypergeometric([1-n, n], [-n], -4).simplify()
[a(n) for n in range(20)] # Peter Luschny, Nov 30 2014
(Sage) ((9 +sqrt(1+16*x))/(2*(5-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
(PARI) my(x='x+O('x^30)); Vec((9 +sqrt(1+16*x))/(2*(5-x))) \\ G. C. Greubel, May 03 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (9 +Sqrt(1+16*x))/(2*(5-x)) )); // G. C. Greubel, May 03 2019
CROSSREFS
Cf. A064334.
Sequence in context: A245925 A260209 A086655 * A006091 A357232 A355865
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Sep 21 2001
STATUS
approved