login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064329
Generalized Catalan numbers C(-7; n).
4
1, 1, -6, 85, -1490, 29226, -614004, 13511709, -307448490, 7174776190, -170777485556, 4130050311234, -101192982385844, 2506610481299380, -62668163792277840, 1579300030107459885, -40076101342241993370
OFFSET
0,3
COMMENTS
See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references.
LINKS
FORMULA
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-7)^m/n.
a(n) = (1/8)^n*(1 + 7*Sum_{k=0..n-1} C(k)*(-7*8)^k), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan).
G.f.: (1+7*x*c(-7*x)/8)/(1-x/8) = 1/(1-x*c(-7*x)) with c(x) g.f. of Catalan numbers A000108.
MATHEMATICA
CoefficientList[Series[(15 +Sqrt[1+28*x])/(2*(8-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((15 +sqrt(1+28*x))/(2*(8-x))) \\ G. C. Greubel, May 03 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (15 +Sqrt(1+28*x))/(2*(8-x)) )); // G. C. Greubel, May 03 2019
(Sage) ((15 +sqrt(1+28*x))/(2*(8-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
CROSSREFS
Sequence in context: A290011 A164266 A136597 * A187740 A332407 A358297
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Sep 21 2001
STATUS
approved