OFFSET
0,2
FORMULA
a(n) = (5*n+7) * 5^(n-1) * n!/2 for n>0 with a(0)=1.
E.g.f.: (2 - 8*x + 15*x^2) / (2*(1-5*x)^2).
EXAMPLE
G.f.: A(x) = 1 + 6*x + 85*x^2 + 1650*x^3 + 40500*x^4 + 1200000*x^5 +...
where
A(x) = 1 + 6*x/(1+6*x) + 11^2*x^2/(1+11*x)^2 + 16^3*x^3/(1+16*x)^3 + 21^4*x^4/(1+21*x)^4 + 26^5*x^5/(1+26*x)^5 +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, ((5*m+1)*x)^m/(1+(5*m+1)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 03 2013
STATUS
approved