login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187738
G.f.: Sum_{n>=0} (3*n+1)^n * x^n / (1 + (3*n+1)*x)^n.
8
1, 4, 33, 378, 5508, 97200, 2012040, 47764080, 1278607680, 38093690880, 1249949232000, 44783895340800, 1739500776921600, 72804471541401600, 3266273336880153600, 156364149105964800000, 7955807906511489024000, 428712969452770050048000, 24390705726366524633088000
OFFSET
0,2
COMMENTS
More generally,
if Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (b*n+c)^n * x^n / (1 + (b*n+c)*x)^n,
then Sum_{n>=0} a(n)*x^n/n! = (2 - 2*(b-c)*x + b*(b-2*c)*x^2)/(2*(1-b*x)^2)
so that a(n) = (b*n + (b+2*c)) * b^(n-1) * n!/2 for n>0 with a(0)=1.
FORMULA
a(n) = (3*n+5) * 3^(n-1) * n!/2 for n>0 with a(0)=1.
E.g.f.: (2 - 4*x + 3*x^2) / (2*(1-3*x)^2).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 33*x^2 + 378*x^3 + 5508*x^4 + 97200*x^5 +...
where
A(x) = 1 + 4*x/(1+4*x) + 7^2*x^2/(1+7*x)^2 + 10^3*x^3/(1+10*x)^3 + 13^4*x^4/(1+13*x)^4 + 16^5*x^5/(1+16*x)^5 +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, ((3*m+1)*x)^m/(1+(3*m+1)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 03 2013
STATUS
approved