login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123219
Expansion of -x*(x^4 + 52*x^3 - 122*x^2 - 28*x + 1) / ((x-1)*(x^2 - 34*x + 1)*(x^2 + 6*x + 1)).
1
1, 1, 81, 2401, 83521, 2825761, 96059601, 3262808641, 110841719041, 3765342321601, 127910874833361, 4345203949621921, 147609026049038401, 5014361666349715681, 170340687719412376401, 5786569020271612560001
OFFSET
1,3
FORMULA
G.f.: -x*(x^4 + 52*x^3 - 122*x^2 - 28*x + 1) / ((x-1)*(x^2 - 34*x + 1)*(x^2 + 6*x + 1)). - Colin Barker, Jan 04 2013
MAPLE
seq(coeff(series(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1)), x, n+1), x, n), n = 1 .. 20); # Muniru A Asiru, Oct 13 2018
MATHEMATICA
LinearRecurrence[{29, 174, -174, -29, 1}, {1, 1, 81, 2401, 83521}, 20] (* Harvey P. Dale, Jun 01 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1))) \\ G. C. Greubel, Oct 12 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(-x*(x^4+52*x^3-122*x^2-28*x+1)/((x-1)*(x^2-34*x+1)*(x^2+6*x+1)))); // G. C. Greubel, Oct 12 2018
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
EXTENSIONS
New name from Colin Barker, Jan 04 2013
Edited by Joerg Arndt, Oct 13 2018
STATUS
approved