OFFSET
1,2
COMMENTS
There are no even terms because 2, 4 and 6 are not Colombian as 2 = 1 + (sum of digits of 1), 4 = 2 + (sum of digits of 2) and 6 = 3 + (sum of digits of 3), then every even integer >= 8 is Brazilian.
LINKS
Giovanni Resta, Self or Colombian number, Numbers Aplenty.
Wikipédia, Nombre brésilien (in French).
EXAMPLE
233 is a term because 233 is not of the form m + (sum of digits of m) for any m < 233, so 233 is Colombian and there is no Brazilian representation for 233.
MATHEMATICA
brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length[Union[IntegerDigits[n, b]]] > 1, b++]; b < n - 1]; n = 4000; Select[Complement[Range[n], Union @ Table[Plus @@ IntegerDigits[k] + k, {k, 1, n}]], !brazQ[#] &] (* Amiram Eldar, Jul 14 2020 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 14 2020
STATUS
approved