|
|
A156585
|
|
Numbers such that (2^(n^2)-1)/(2^n-1) is prime.
|
|
4
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It is easy to see that all terms of this sequence must be prime; this motivates the definition of A051156(n) = (2^prime(n)^2-1)/(2^prime(n)-1).
No further terms up to n=1999. - Andreas Höglund, Apr 06 2018
|
|
LINKS
|
Table of n, a(n) for n=1..4.
|
|
MATHEMATICA
|
Select[Prime[Range[17]], PrimeQ[Cyclotomic[#^2, 2]] &] (* Arkadiusz Wesolowski, May 13 2012 *)
|
|
PROG
|
(PARI) for/*prime*/( n=1, 99, is/*pseudo*/prime( (2^n^2-1)/(2^n-1) ) & print1(n, ", "))
|
|
CROSSREFS
|
Cf. A051156.
Sequence in context: A343557 A238399 A159611 * A354744 A299923 A337189
Adjacent sequences: A156582 A156583 A156584 * A156586 A156587 A156588
|
|
KEYWORD
|
hard,more,nonn
|
|
AUTHOR
|
M. F. Hasler, Feb 10 2009
|
|
STATUS
|
approved
|
|
|
|