OFFSET
0,6
LINKS
G. C. Greubel, Antidiagonal rows n = 0..50, flattened
FORMULA
T(n,k) = Product_{j=1..n} ( Sum_{i=0..j-1} binomial(j-1, i)*(k+1)^i ) with T(n, 0) = n! (square array).
T(n, k) = (k+2)^binomial(n, 2) with T(n, 0) = n! (square array). - G. C. Greubel, Jun 28 2021
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, 1 ...;
1, 1, 1, 1, 1, 1 ...;
2, 3, 4, 5, 6, 7 ...;
6, 27, 64, 125, 216, 343 ...;
24, 729, 4096, 15625, 46656, 117649 ...;
120, 59049, 1048576, 9765625, 60466176, 282475249 ...;
Antidiagonal triangle begins as:
1;
1, 1;
1, 1, 2;
1, 1, 3, 6;
1, 1, 4, 27, 24;
1, 1, 5, 64, 729, 120;
1, 1, 6, 125, 4096, 59049, 720;
1, 1, 7, 216, 15625, 1048576, 14348907, 5040;
1, 1, 8, 343, 46656, 9765625, 1073741824, 10460353203, 40320;
MATHEMATICA
(* First program *)
T[n_, k_]:= If[k==0, n!, Product[Sum[Binomial[j-1, i]*(k+1)^i, {i, 0, j-1}], {j, n}]];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jun 28 2021 *)
(* Second program *)
T[n_, k_]:= If[k==0, n!, (k+2)^Binomial[n, 2]];
Table[T[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 28 2021 *)
PROG
(Magma)
A156582:= func< n, k | k eq 0 select Factorial(n) else (k+2)^Binomial(n, 2) >;
[A156582(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
(Sage)
def A156582(n, k): return factorial(n) if (k==0) else (k+2)^binomial(n, 2)
flatten([[A156582(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 10 2009
EXTENSIONS
Edited by G. C. Greubel, Jun 28 2021
STATUS
approved