login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118190 Triangle T(n,k) = 5^(k*(n-k)) for n >= k >= 0, read by rows. 20
1, 1, 1, 1, 5, 1, 1, 25, 25, 1, 1, 125, 625, 125, 1, 1, 625, 15625, 15625, 625, 1, 1, 3125, 390625, 1953125, 390625, 3125, 1, 1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1, 1, 78125, 244140625, 30517578125, 152587890625, 30517578125, 244140625, 78125, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Matrix power T^m satisfies: [T^m](n,k) = [T^m](n-k,0)*T(n,k) for all m and so the triangle has an invariant character. For example, the matrix inverse is defined by [T^-1](n,k) = A118193(n-k)*T(n,k); also, the matrix log is given by [log(T)](n,k) = A118194(n-k)*T(n,k).

For any column vector C, the matrix product of T*C transforms the g.f. of C: Sum_{n>=0} c(n)*x^n into the g.f.: Sum_{n>=0} c(n)*x^n/(1-5^n*x).

LINKS

G. C. Greubel, Rows n = 0..50 of the triangle, flattened

FORMULA

G.f.: A(x,y) = Sum_{n>=0} x^n/(1-5^n*x*y).

G.f. satisfies: A(x,y) = 1/(1-x*y) + x*A(x,5*y).

T(n,k) = (1/n)*( 5^(n-k)*k*T(n-1,k-1) + 5^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 21 2014

T(n, k, m) = (m+2)^(k*(n-k)) with m = 3. - G. C. Greubel, Jun 29 2021

EXAMPLE

A(x,y) = 1/(1-x*y) + x/(1-5*x*y) + x^2/(1-25*x*y) + x^3/(1-125*x*y) + ...

Triangle begins:

  1;

  1,     1;

  1,     5,       1;

  1,    25,      25,         1;

  1,   125,     625,       125,         1;

  1,   625,   15625,     15625,       625,       1;

  1,  3125,  390625,   1953125,    390625,    3125,     1;

  1, 15625, 9765625, 244140625, 244140625, 9765625, 15625, 1; ...

The matrix inverse T^-1 starts:

         1;

        -1,       1;

         4,      -5,        1;

       -76,     100,      -25,     1;

      7124,   -9500,     2500,  -125,    1;

  -3326876, 4452500, -1187500, 62500, -625, 1; ...

where [T^-1](n,k) = A118193(n-k)*(5^k)^(n-k).

MATHEMATICA

With[{m=3}, Table[(m+2)^(k*(n-k)), {n, 0, 12}, {k, 0, n}]//Flatten] (* G. C. Greubel, Jun 29 2021 *)

PROG

(PARI) T(n, k)=if(n<k || k<0, 0, (5^k)^(n-k) )

(MAGMA) [5^(k*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 29 2021

(Sage) flatten([[5^(k*(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 29 2021

CROSSREFS

Cf. A118191 (row sums), A118192 (antidiagonal sums), A118193, A118194.

Cf. A117401 (m=0), A118180 (m=1), A118185 (m=2), this sequence (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15).

Sequence in context: A152572 A203346 A176793 * A172342 A143213 A172377

Adjacent sequences:  A118187 A118188 A118189 * A118191 A118192 A118193

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Apr 15 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 24 05:38 EDT 2021. Contains 348217 sequences. (Running on oeis4.)