login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118191 Row sums of triangle A118190: a(n) = Sum_{k=0..n} 5^(k*(n-k)) for n>=0. 4
1, 2, 7, 52, 877, 32502, 2740627, 507843752, 214111484377, 198376465625002, 418186492923828127, 1937270172119160156252, 20419262349796295263671877, 472966350615029335022460937502, 24925857360591180741786959228515627 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Self-convolution of A118195; in general, sqrt(Sum_{n>=0} x^n/(1-q^n*x)) is an integer series whenever q == 1 (mod 4). Also equals column 0 of the matrix square of triangle A118190, where [A118190^2](n,k) = a(n-k)*5^(k*(n-k)) for n>=k>=0.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..70

FORMULA

G.f.: A(x) = Sum_{n>=0} x^n/(1-5^n*x).

EXAMPLE

A(x) = 1/(1-x) + x/(1-5*x) + x^2/(1-25*x) + x^3/(1-125*x) + ...

  = 1 + 2*x + 7*x^2 + 52*x^3 + 877*x^4 + 32502*x^5 + ...

MATHEMATICA

Table[Sum[5^(k*(n-k)), {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)

PROG

(PARI) a(n)=sum(k=0, n, (5^k)^(n-k))

(MAGMA) [(&+[5^(k*(n-k)): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021

(Sage) [sum(5^(k*(n-k)) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 29 2021

CROSSREFS

Cf. A118190 (triangle), A118192 (antidiagonal sums), A118195 (A(x)^(1/2)).

Sequence in context: A046662 A237195 A275597 * A005588 A106898 A106899

Adjacent sequences:  A118188 A118189 A118190 * A118192 A118193 A118194

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 15 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 12:23 EDT 2021. Contains 348041 sequences. (Running on oeis4.)