OFFSET
1,2
COMMENTS
In other words, a(n) is the number of simple labeled graphs on {1,2,...,n} such that 1 is an isolated node, or 1 and 2 form a size 2 component, or 1,2 and 3 form a size 3 component, or ... 1,2,3,...,k form a size k component, where 1<=k<=n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..80
FORMULA
a(n) = Sum_{k=1..n} A223894(n,k)/binomial(n,k).
EXAMPLE
a(3) = 7. We count all 8 simple labeled graphs on {1,2,3} except: 1-3 2.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
a:= n-> add(b(k)*2^((n-k)*(n-k-1)/2), k=1..n):
seq(a(n), n=1..20); # Alois P. Heinz, Feb 04 2014
MATHEMATICA
nn=15; g=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, nn}]; a=Drop[Range[0, nn]!CoefficientList[Series[Log[g], {x, 0, nn}], x], 1]; Map[Total, Table[Table[Drop[Transpose[Table[ Range[0, nn]!CoefficientList[Series[a[[n]]x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1][[i, j]]/Binomial[i, j], {j, 1, i}], {i, 1, nn}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 04 2014
STATUS
approved