login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237195
Number of simple labeled graphs on n nodes that contain some size k connected component, all of whose nodes are labeled with integers {1,2,...,k} for some k in {1,2,...,n}.
1
1, 2, 7, 52, 846, 28628, 1928768, 255610528, 66822534992, 34632302913632, 35711543058158592, 73426371674544520192, 301419451958411673103360, 2472252535617096234970201088, 40532629372281642451697543062528, 1328660058258732602631909956943781888
OFFSET
1,2
COMMENTS
In other words, a(n) is the number of simple labeled graphs on {1,2,...,n} such that 1 is an isolated node, or 1 and 2 form a size 2 component, or 1,2 and 3 form a size 3 component, or ... 1,2,3,...,k form a size k component, where 1<=k<=n.
LINKS
FORMULA
a(n) = Sum_{k=1..n} A223894(n,k)/binomial(n,k).
EXAMPLE
a(3) = 7. We count all 8 simple labeled graphs on {1,2,3} except: 1-3 2.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
a:= n-> add(b(k)*2^((n-k)*(n-k-1)/2), k=1..n):
seq(a(n), n=1..20); # Alois P. Heinz, Feb 04 2014
MATHEMATICA
nn=15; g=Sum[2^Binomial[n, 2]x^n/n!, {n, 0, nn}]; a=Drop[Range[0, nn]!CoefficientList[Series[Log[g], {x, 0, nn}], x], 1]; Map[Total, Table[Table[Drop[Transpose[Table[ Range[0, nn]!CoefficientList[Series[a[[n]]x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1][[i, j]]/Binomial[i, j], {j, 1, i}], {i, 1, nn}]]
CROSSREFS
Sequence in context: A216086 A210856 A046662 * A275597 A118191 A005588
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 04 2014
STATUS
approved