Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 05 2014 05:03:15
%S 1,2,7,52,846,28628,1928768,255610528,66822534992,34632302913632,
%T 35711543058158592,73426371674544520192,301419451958411673103360,
%U 2472252535617096234970201088,40532629372281642451697543062528,1328660058258732602631909956943781888
%N Number of simple labeled graphs on n nodes that contain some size k connected component, all of whose nodes are labeled with integers {1,2,...,k} for some k in {1,2,...,n}.
%C In other words, a(n) is the number of simple labeled graphs on {1,2,...,n} such that 1 is an isolated node, or 1 and 2 form a size 2 component, or 1,2 and 3 form a size 3 component, or ... 1,2,3,...,k form a size k component, where 1<=k<=n.
%H Alois P. Heinz, <a href="/A237195/b237195.txt">Table of n, a(n) for n = 1..80</a>
%F a(n) = Sum_{k=1..n} A223894(n,k)/binomial(n,k).
%e a(3) = 7. We count all 8 simple labeled graphs on {1,2,3} except: 1-3 2.
%p b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
%p add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
%p end:
%p a:= n-> add(b(k)*2^((n-k)*(n-k-1)/2), k=1..n):
%p seq(a(n), n=1..20); # _Alois P. Heinz_, Feb 04 2014
%t nn=15;g=Sum[2^Binomial[n,2]x^n/n!,{n,0,nn}];a=Drop[Range[0,nn]!CoefficientList[Series[Log[g],{x,0,nn}],x],1];Map[Total,Table[Table[Drop[Transpose[Table[ Range[0,nn]!CoefficientList[Series[a[[n]]x^n/n! g,{x,0,nn}],x],{n,1,nn}]],1][[i,j]]/Binomial[i,j],{j,1,i}],{i,1,nn}]]
%K nonn
%O 1,2
%A _Geoffrey Critzer_, Feb 04 2014