login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A223894
Triangular array read by rows: T(n,k) is the number of connected components with size k summed over all simple labeled graphs on n nodes; n>=1, 1<=k<=n.
4
1, 2, 1, 6, 3, 4, 32, 12, 16, 38, 320, 80, 80, 190, 728, 6144, 960, 640, 1140, 4368, 26704, 229376, 21504, 8960, 10640, 30576, 186928, 1866256, 16777216, 917504, 229376, 170240, 326144, 1495424, 14930048, 251548592, 2415919104, 75497472, 11010048, 4902912, 5870592, 17945088, 134370432, 2263937328, 66296291072
OFFSET
1,2
LINKS
FORMULA
E.g.f. for column k: A001187(n)*x^n/n!*A(x) where A(x) is the e.g.f. for A006125.
Sum_{k=0..n} T(n, k) = A125207(n).
T(n, 1) = A123903(n).
T(n, 2) = A182166(n).
T(n, n) = A001187(n). - G. C. Greubel, Oct 03 2022
EXAMPLE
Triangle T(n,k) begins:
1;
2, 1;
6, 3, 4;
32, 12, 16, 38;
320, 80, 80, 190, 728;
6144, 960, 640, 1140, 4368, 26704;
229376, 21504, 8960, 10640, 30576, 186928, 1866256;
...
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
end:
T:= (n, k)-> binomial(n, k)*b(k)*2^((n-k)*(n-k-1)/2):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 26 2013
MATHEMATICA
nn = 9; f[list_] := Select[list, # > 0 &]; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = Drop[Range[0, nn]! CoefficientList[Series[Log[g] + 1, {x, 0, nn}], x], 1]; Map[f, Drop[Transpose[Table[Range[0, nn]! CoefficientList[Series[a[[n]] x^n/n! g, {x, 0, nn}], x], {n, 1, nn}]], 1]] // Grid
PROG
(Magma)
function b(n) // b = A001187
if n eq 0 then return 1;
else return 2^Binomial(n, 2) - (&+[Binomial(n-1, j-1)*2^Binomial(n-j, 2)*b(j): j in [0..n-1]]);
end if; return b;
end function;
A223894:= func< n, k | Binomial(n, k)*2^Binomial(n-k, 2)*b(k) >;
[A223894(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2022
(SageMath)
@CachedFunction
def b(n): # b = A001187
if (n==0): return 1
else: return 2^binomial(n, 2) - sum(binomial(n-1, j-1)*2^binomial(n-j, 2)*b(j) for j in range(n))
def A223894(n, k): return binomial(n, k)*2^binomial(n-k, 2)*b(k)
flatten([[A223894(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Oct 03 2022
CROSSREFS
Cf. A001187, A006125, A123903 (column 1), A125207 (row sums), A182166 (column 2).
Sequence in context: A160047 A249990 A097288 * A308573 A171178 A100014
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Mar 28 2013
STATUS
approved