login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118188
Column 0 of the matrix inverse of triangle A118185(n,k) = (4^k)^(n-k).
3
1, -1, 3, -33, 1407, -237057, 158992383, -425715556353, 4556004503093247, -194971932801554579457, 33370662957719457037287423, -22845215336421444625717664940033, 62557106610069521429900219032249827327, -685195337175488637158242110253091749621661697
OFFSET
0,3
COMMENTS
The entire matrix inverse of triangle A118185 is determined by column 0 (this sequence): [A118185^-1](n,k) = a(n-k)*4^(k*(n-k)) for n>=k>=0. Any g.f. of the form: Sum_{k>=0} b(k)*x^k may be expressed as: Sum_{n>=0} c(n)*x^n/(1-4^n*x) by applying the inverse transformation: c(n) = Sum_{k=0..n} a(n-k)*b(k)*4^(k*(n-k)).
LINKS
FORMULA
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1-4^n*x).
0^n = Sum_{k=0..n} a(k)*4^(k*(n-k)) for n>=0.
G.f.: Sum_{n>=0} a(n)*x^n/2^(n^2) = 1/Sum_{n>=0} x^n/2^(n^2). - Vladeta Jovovic, Oct 14 2009
a(n) = (-1)*Sum_{j=0..n-1} 4^(j*(n-j))*a(j) with a(0) = 1, and a(1) = -1. - G. C. Greubel, Jun 29 2021
EXAMPLE
Recurrence at n=4:
0 = a(0)*(4^0)^4 +a(1)*(4^1)^3 +a(2)*(4^2)^2 +a(3)*(4^3)^1 +a(4)*(4^4)^0
= 1*(4^0) - 1*(4^3) + 3*(4^4) - 33*(4^3) + 1407*(4^0).
The g.f. is illustrated by:
1 = 1/(1-x) - 1*x/(1-4*x) + 3*x^2/(1-16*x) - 33*x^3/(1-64*x) +
1407*x^4/(1-256*x) - 237057*x^5/(1-1024*x) + 158992383*x^6/(1-4096*x) +...
MATHEMATICA
a[n_]:= a[n]= If[n<2, (-1)^n, -Sum[4^(j*(n-j))*a[j], {j, 0, n-1}]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
PROG
(PARI) {a(n)=local(T=matrix(n+1, n+1, r, c, if(r>=c, (4^(c-1))^(r-c)))); return((T^-1)[n+1, 1])}
(Sage)
@CachedFunction
def a(n): return (-1)^n if (n<2) else -sum(4^(j*(n-j))*a(j) for j in (0..n-1))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
CROSSREFS
Cf. A118185 (triangle).
Sequence in context: A012487 A188387 A113111 * A342170 A194889 A126675
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 15 2006
STATUS
approved