login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118188 Column 0 of the matrix inverse of triangle A118185(n,k) = (4^k)^(n-k). 3
1, -1, 3, -33, 1407, -237057, 158992383, -425715556353, 4556004503093247, -194971932801554579457, 33370662957719457037287423, -22845215336421444625717664940033, 62557106610069521429900219032249827327, -685195337175488637158242110253091749621661697 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The entire matrix inverse of triangle A118185 is determined by column 0 (this sequence): [A118185^-1](n,k) = a(n-k)*4^(k*(n-k)) for n>=k>=0. Any g.f. of the form: Sum_{k>=0} b(k)*x^k may be expressed as: Sum_{n>=0} c(n)*x^n/(1-4^n*x) by applying the inverse transformation: c(n) = Sum_{k=0..n} a(n-k)*b(k)*4^(k*(n-k)).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..55

FORMULA

G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1-4^n*x).

0^n = Sum_{k=0..n} a(k)*4^(k*(n-k)) for n>=0.

G.f.: Sum_{n>=0} a(n)*x^n/2^(n^2) = 1/Sum_{n>=0} x^n/2^(n^2). - Vladeta Jovovic, Oct 14 2009

a(n) = (-1)*Sum_{j=0..n-1} 4^(j*(n-j))*a(j) with a(0) = 1, and a(1) = -1. - G. C. Greubel, Jun 29 2021

EXAMPLE

Recurrence at n=4:

0 = a(0)*(4^0)^4 +a(1)*(4^1)^3 +a(2)*(4^2)^2 +a(3)*(4^3)^1 +a(4)*(4^4)^0

= 1*(4^0) - 1*(4^3) + 3*(4^4) - 33*(4^3) + 1407*(4^0).

The g.f. is illustrated by:

1 = 1/(1-x) - 1*x/(1-4*x) + 3*x^2/(1-16*x) - 33*x^3/(1-64*x) +

1407*x^4/(1-256*x) - 237057*x^5/(1-1024*x) + 158992383*x^6/(1-4096*x) +...

MATHEMATICA

a[n_]:= a[n]= If[n<2, (-1)^n, -Sum[4^(j*(n-j))*a[j], {j, 0, n-1}]];

Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)

PROG

(PARI) {a(n)=local(T=matrix(n+1, n+1, r, c, if(r>=c, (4^(c-1))^(r-c)))); return((T^-1)[n+1, 1])}

(Sage)

@CachedFunction

def a(n): return (-1)^n if (n<2) else -sum(4^(j*(n-j))*a(j) for j in (0..n-1))

[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021

CROSSREFS

Cf. A118185 (triangle).

Sequence in context: A012487 A188387 A113111 * A342170 A194889 A126675

Adjacent sequences:  A118185 A118186 A118187 * A118189 A118190 A118191

KEYWORD

sign

AUTHOR

Paul D. Hanna, Apr 15 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 19:02 EST 2021. Contains 349424 sequences. (Running on oeis4.)