login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117401
Triangle T(n,k) = 2^(k*(n-k)), read by rows.
29
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 64, 64, 16, 1, 1, 32, 256, 512, 256, 32, 1, 1, 64, 1024, 4096, 4096, 1024, 64, 1, 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1, 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1
OFFSET
0,5
COMMENTS
Matrix power T^m satisfies: [T^m](n,k) = [T^m](n-k,0)*T(n,k) for all m and so the triangle has an invariant character.
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
FORMULA
G.f.: A(x,y) = Sum_{n>=0} x^n/(1 - 2^n*x*y).
G.f. satisfies: A(x,y) = 1/(1 - x*y) + x*A(x,2*y).
Equals ConvOffsStoT transform of the 2^n series: (1, 2, 4, 8, ...); e.g., ConvOffs transform of (1, 2, 4, 8) = (1, 8, 16, 8, 1). - Gary W. Adamson, Apr 21 2008
T(n,k) = (1/n)*( 2^(n-k)*k*T(n-1,k-1) + 2^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
Let E(x) = Sum_{n>=0} x^n/2^C(n,2). Then E(x)*E(y*x) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/2^C(n,2). - Geoffrey Critzer, May 31 2020
T(n, k, m) = (m+2)^(k*(n-k)) with m = 0. - G. C. Greubel, Jun 28 2021
EXAMPLE
A(x,y) = 1/(1-xy) + x/(1-2xy) + x^2/(1-4xy) + x^3/(1-8xy) + ...
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 8, 16, 8, 1;
1, 16, 64, 64, 16, 1;
1, 32, 256, 512, 256, 32, 1;
1, 64, 1024, 4096, 4096, 1024, 64, 1;
1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1;
1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1;
MATHEMATICA
Table[2^((n-k)k), {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Jan 09 2017 *)
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, 2^((n-k)*k))
(Magma)
A117401:= func< n, k, m | (m+2)^(k*(n-k)) >;
[A117401(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
(Sage)
def A117401(n, k, m): return (m+2)^(k*(n-k))
flatten([[A117401(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
CROSSREFS
Cf. A117402 (row sums), A117403 (antidiagonal sums), A002416 (central terms).
Cf. this sequence (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15).
Sequence in context: A328887 A372067 A299906 * A144324 A331406 A034372
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 12 2006
STATUS
approved