login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117403
a(n) = Sum_{k=0..floor(n/2)} 2^((n-2*k)*k) for n>=0.
3
1, 1, 2, 3, 6, 13, 34, 105, 386, 1681, 8706, 53793, 395266, 3442753, 35659778, 440672385, 6476038146, 112812130561, 2336999211010, 57759810847233, 1697654543745026, 59146046307566593, 2450521284684021762
OFFSET
0,3
COMMENTS
Equals the antidiagonal sums of triangle A117401.
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} x^n / (1 - 2^n*x^2).
a(2*n) = Sum_{k=0..n} 4^((n-k)*k).
a(2*n+1) = Sum_{k=0..n} 2^k * 4^((n-k)*k).
G.f.: 1/(1-x^2) - x/(Q(0) +x-x^3), where Q(k) = x^2*(2+x)*2^k -1-x - x*(2*x^2*2^k -1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 11 2013
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 13*x^5 + 34*x^6 + 105*x^7 + ...
where
A(x) = 1/(1-x^2) + x/(1-2*x^2) + x^2/(1-4*x^2) + x^3/(1-8*x^2) + x^4/(1-16*x^2) + ...
MATHEMATICA
Table[Sum[2^(k*(n-2*k)), {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Jun 28 2021 *)
PROG
(PARI) a(n) = sum(k=0, n\2, 2^((n-2*k)*k))
(PARI) {a(n) = polcoeff(sum(m=0, n, x^m/(1-2^m*x^2 +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
(Magma) [(&+[2^(k*(n-2*k)) : k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 28 2021
(Sage) [sum(2^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 28 2021
CROSSREFS
Cf. A117401 (triangle), A117402 (row sums).
Sequence in context: A202086 A227366 A171878 * A002877 A065845 A137273
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 12 2006
EXTENSIONS
Name changed by Paul D. Hanna, Nov 11 2013
STATUS
approved