login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117402
Row sums of triangle A117401: a(n) = Sum_{k=0..n} 2^((n-k)*k) for n>=0.
7
1, 2, 4, 10, 34, 162, 1090, 10370, 139522, 2654722, 71435266, 2718435330, 146299424770, 11134711111682, 1198484887715842, 182431106853797890, 39271952800672710658, 11955805018770498519042, 5147453397489773531365378
OFFSET
0,2
COMMENTS
a(n) is the number of 2-colored labeled graphs (as in A047863) such that the black nodes are labeled with {1,2,...,k} where k, 0<=k<=n, is the number of black nodes and the white nodes are labeled with {k+1,k+2,...,n}. These graphs form the desired binomial poset (for the case q=2) in the "task left to the reader" in the Stanley reference below. - Geoffrey Critzer, May 31 2020
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, Cambridge, 2012, Example 3.18.3 e, page 323.
LINKS
FORMULA
G.f.: A(x) = Sum_{n>=0} x^n/(1-2^n*x).
Let E(x) = Sum_{n>=0} x^n/2^C(n,2). Then E(x)^2 = Sum_{n>=0} a(n)*x^n/2^C(n,2). - Geoffrey Critzer, May 31 2020
a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3, 0, 1/2] = JacobiTheta3(0,1/2) = 2.128936827211877158669458548544951324612516539940878092889... if n is even and c = EllipticTheta[2, 0, 1/2] = JacobiTheta2(0,1/2) = 2.128931250513027558591613402575350180853805396958448940969... if n is odd. - Vaclav Kotesovec, Jun 28 2021
EXAMPLE
A(x) = 1/(1-x) + x/(1-2x) + x^2/(1-4x) + x^3/(1-8x) + ...
MAPLE
N:= 25:
G:= series(add(x^n/(1-2^n*x), n=0..N), x, N+1):
seq(coeff(G, x, n), n=0..N)); # Robert Israel, Dec 11 2018
MATHEMATICA
a[n_]:= Sum[2^((n-k)*k), {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 12 2018 *)
PROG
(PARI) a(n)=sum(k=0, n, 2^((n-k)*k))
(Magma) [(&+[2^(k*(n-k)): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Jun 28 2021
(Sage) [sum(2^(k*(n-k)) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Jun 28 2021
CROSSREFS
Cf. A117401 (triangle), A117403 (antidiagonal sums).
Sequence in context: A297197 A297201 A003422 * A109455 A372495 A258948
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 12 2006
STATUS
approved