login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258948
a(1)=1, a(2)=2; for n>2, a(n) = (1/2)*a(n-1)*a(n-2) + a(n-1) + a(n-2).
0
1, 2, 4, 10, 34, 214, 3886, 419902, 816293374, 171382426877950, 69949169911638289022974, 5994029248777394614754727872037912574, 209638685189029793998133268981457005889853767752082771673086
OFFSET
1,2
COMMENTS
a(n) + 2 = (1/2)*(a(n-1) + 2)*(a(n-2) + 2), from which the general formula can be proved using the method shown in A063896.
FORMULA
a(n) = 2 * 3^A000045(n-2) * 2^A000045(n-3) - 2, where A000045(n) is the n-th Fibonacci number.
EXAMPLE
a(3) = (1/2)*2*1 + 2 + 1 = 4;
a(4) = (1/2)*4*2 + 4 + 2 = 10;
a(5) = (1/2)*10*4 + 10 + 4 = 34;
a(6) = 2*(3^3)(2^2) - 2 = 214.
MATHEMATICA
Table[2 3^Fibonacci[n-2] 2^Fibonacci[n-3] - 2, {n, 1, 20}] (* Vincenzo Librandi, Jun 17 2015 *)
PROG
(Magma) [n le 2 select n else Self(n-1)*Self(n-2)/2+Self(n-1)+Self(n-2): n in [1..13]];
(PARI) a(n) = 2*(3^fibonacci(n-2))*(2^fibonacci(n-3)) - 2; \\ Michel Marcus, Jun 17 2015
(Magma) [2*3^Fibonacci(n-2)*2^Fibonacci(n-3)-2: n in [1..20]]; // Vincenzo Librandi, Jun 17 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Morris Neene, Jun 15 2015
STATUS
approved