OFFSET
1,2
COMMENTS
a(n) + 2 = (1/2)*(a(n-1) + 2)*(a(n-2) + 2), from which the general formula can be proved using the method shown in A063896.
FORMULA
EXAMPLE
a(3) = (1/2)*2*1 + 2 + 1 = 4;
a(4) = (1/2)*4*2 + 4 + 2 = 10;
a(5) = (1/2)*10*4 + 10 + 4 = 34;
a(6) = 2*(3^3)(2^2) - 2 = 214.
MATHEMATICA
Table[2 3^Fibonacci[n-2] 2^Fibonacci[n-3] - 2, {n, 1, 20}] (* Vincenzo Librandi, Jun 17 2015 *)
PROG
(Magma) [n le 2 select n else Self(n-1)*Self(n-2)/2+Self(n-1)+Self(n-2): n in [1..13]];
(PARI) a(n) = 2*(3^fibonacci(n-2))*(2^fibonacci(n-3)) - 2; \\ Michel Marcus, Jun 17 2015
(Magma) [2*3^Fibonacci(n-2)*2^Fibonacci(n-3)-2: n in [1..20]]; // Vincenzo Librandi, Jun 17 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Morris Neene, Jun 15 2015
STATUS
approved