The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254132 a(0)=1 and a(1)=2, then each term is x + y + x*y where x and y are the 2 last terms. 2
 1, 2, 5, 17, 107, 1943, 209951, 408146687, 85691213438975, 34974584955819144511487, 2997014624388697307377363936018956287, 104819342594514896999066634490728502944926883876041385836543 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Ana Rechtman, Janvier 2015, 3ème défi, (in French), Images des Mathématiques, CNRS, 2015. Ana Rechtman, Solution, (in French), Images des Mathématiques, CNRS, 2015. FORMULA a(n) = a(n-1) + a(n-2) + a(n-1)*a(n-2). a(0) = 1 and a(n) = 2^Fibonacci(n)*3^Fibonacci(n+1) - 1 (see 2nd link). a(n) == 8 mod 9, for n > 2. - Ivan N. Ianakiev, Jan 27 2015 EXAMPLE a(0) = 1, a(1) = 2, a(2) = 1+2+(1*2) = 5, a(3) = 2+5+(2*5) = 17. MATHEMATICA a254132[0]=1; a254132[n_]:=2^Fibonacci[n-1]*3^Fibonacci[n]-1; a254132/@Range[0, 11] (* Ivan N. Ianakiev, Jan 27 2015 *) PROG (PARI) lista(nn) = {x = 1; y = 2; print1(x, ", ", y, ", "); for (j=1, nn, z = x + y + x*y; print1(z, ", "); x = y; y = z; ); } (PARI) a(n) = if (!n, 1, 2^fibonacci(n)*3^fibonacci(n+1) - 1); CROSSREFS Cf. A000045 (Fibonacci), A063896 (similar with initial values 0,1). Cf. A198796 (2^n*3^(n+1)-1). Sequence in context: A143878 A081546 A103511 * A161609 A228238 A174168 Adjacent sequences:  A254129 A254130 A254131 * A254133 A254134 A254135 KEYWORD nonn AUTHOR Michel Marcus, Jan 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 13:58 EDT 2020. Contains 334724 sequences. (Running on oeis4.)