login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254132
a(0)=1 and a(1)=2, then each term is x + y + x*y where x and y are the 2 last terms.
2
1, 2, 5, 17, 107, 1943, 209951, 408146687, 85691213438975, 34974584955819144511487, 2997014624388697307377363936018956287, 104819342594514896999066634490728502944926883876041385836543
OFFSET
0,2
LINKS
Ana Rechtman, Janvier 2015, 3ème défi, (in French), Images des Mathématiques, CNRS, 2015.
Ana Rechtman, Solution, (in French), Images des Mathématiques, CNRS, 2015.
FORMULA
a(n) = a(n-1) + a(n-2) + a(n-1)*a(n-2).
a(0) = 1 and a(n) = 2^Fibonacci(n)*3^Fibonacci(n+1) - 1 (see 2nd link).
a(n) == 8 mod 9, for n > 2. - Ivan N. Ianakiev, Jan 27 2015
EXAMPLE
a(0) = 1, a(1) = 2, a(2) = 1+2+(1*2) = 5, a(3) = 2+5+(2*5) = 17.
MATHEMATICA
a254132[0]=1; a254132[n_]:=2^Fibonacci[n-1]*3^Fibonacci[n]-1;
a254132/@Range[0, 11] (* Ivan N. Ianakiev, Jan 27 2015 *)
PROG
(PARI) lista(nn) = {x = 1; y = 2; print1(x, ", ", y, ", "); for (j=1, nn, z = x + y + x*y; print1(z, ", "); x = y; y = z; ); }
(PARI) a(n) = if (!n, 1, 2^fibonacci(n)*3^fibonacci(n+1) - 1);
CROSSREFS
Cf. A000045 (Fibonacci), A063896 (similar, with initial values 0,1).
Cf. A198796 (2^n*3^(n+1)-1).
Sequence in context: A143878 A081546 A103511 * A161609 A228238 A174168
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 26 2015
STATUS
approved