Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 08 2022 08:46:13
%S 1,2,4,10,34,214,3886,419902,816293374,171382426877950,
%T 69949169911638289022974,5994029248777394614754727872037912574,
%U 209638685189029793998133268981457005889853767752082771673086
%N a(1)=1, a(2)=2; for n>2, a(n) = (1/2)*a(n-1)*a(n-2) + a(n-1) + a(n-2).
%C a(n) + 2 = (1/2)*(a(n-1) + 2)*(a(n-2) + 2), from which the general formula can be proved using the method shown in A063896.
%F a(n) = 2 * 3^A000045(n-2) * 2^A000045(n-3) - 2, where A000045(n) is the n-th Fibonacci number.
%e a(3) = (1/2)*2*1 + 2 + 1 = 4;
%e a(4) = (1/2)*4*2 + 4 + 2 = 10;
%e a(5) = (1/2)*10*4 + 10 + 4 = 34;
%e a(6) = 2*(3^3)(2^2) - 2 = 214.
%t Table[2 3^Fibonacci[n-2] 2^Fibonacci[n-3] - 2, {n, 1, 20}] (* _Vincenzo Librandi_, Jun 17 2015 *)
%o (Magma) [n le 2 select n else Self(n-1)*Self(n-2)/2+Self(n-1)+Self(n-2): n in [1..13]];
%o (PARI) a(n) = 2*(3^fibonacci(n-2))*(2^fibonacci(n-3)) - 2; \\ _Michel Marcus_, Jun 17 2015
%o (Magma) [2*3^Fibonacci(n-2)*2^Fibonacci(n-3)-2: n in [1..20]]; // _Vincenzo Librandi_, Jun 17 2015
%Y Cf. A000045, A063896, A100701, A254132.
%K nonn,easy
%O 1,2
%A _Morris Neene_, Jun 15 2015