login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258945
Decimal expansion of Dickman's constant C_4.
1
0, 6, 7, 6, 4, 5, 2, 0, 2, 1, 0, 6, 9, 4, 6, 1, 3, 6, 9, 6, 9, 7, 5, 0, 2, 3, 1, 0, 3, 3, 8, 2, 2, 9, 9, 3, 9, 2, 3, 4, 2, 1, 9, 3, 4, 4, 9, 4, 9, 2, 0, 4, 3, 1, 7, 3, 0, 1, 8, 6, 0, 1, 3, 4, 6, 5, 2, 5, 7, 5, 3, 8, 5, 1, 1, 6, 8, 5, 5, 5, 2, 9, 0, 9, 8, 0, 6, 8, 5, 2, 2, 4, 6, 3, 5, 6, 2, 4, 4, 8, 2, 7, 0, 6
OFFSET
0,2
LINKS
David Broadhurst, Dickman polylogarithms and their constants arXiv:1004.0519 [math-ph], 2010.
FORMULA
C_1 = 0, C_2 = -Pi^2/12, C_3 = -zeta(3)/3.
C_4 = Integral_{0..1/2} (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)^2*polylog(1, -2*x))/(x*(x+1)) dx + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(Pi^2 - 9*log(2)^2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + Pi^2*(log(2)^2/24) - Pi^2*log(2)*(log(3)/6) + log(2)^3*log(3)/2 - 5*log(2)^4/8.
Also (conjecturally) equals Pi^4/1440.
EXAMPLE
0.067645202106946136969750231033822993923421934494920431730186...
MATHEMATICA
digits = 103; C4 = NIntegrate[(Log[x/(2*x+1)]*PolyLog[2, x] + (1/2)*Log[x]^2* PolyLog[1, -2*x])/(x*(x+1)), {x, 0, 1/2}, WorkingPrecision -> digits+5] + 3*PolyLog[4, 1/2] - 3/8 *PolyLog[4, 1/4] - 3/4* Log[2]*PolyLog[3, 1/4] + (Pi^2 - 9*Log[2]^2)/12*PolyLog[2, 1/4] + 21*Log[2]*Zeta[3]/8 + Pi^2*(Log[2]^2/24) - Pi^2*Log[2]*(Log[3]/6) + Log[2]^3*Log[3]/2 - 5*Log[2]^4/8; Join[{0}, RealDigits[C4, 10, digits] // First]
PROG
(Python)
from mpmath import mp, log, polylog, zeta, pi, quad
mp.dps=104
f=lambda x: (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)**2*polylog(1, -2*x))/(x*(x+1))
I=quad(f, [0, 1/2]) + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(pi**2 - 9*log(2)**2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + pi**2*(log(2)**2/24) - pi**2*log(2)*(log(3)/6) + log(2)**3*log(3)/2 - 5*log(2)**4/8
print([int(z) for z in list(str(I)[2:-1])]) # Indranil Ghosh, Jul 03 2017
CROSSREFS
Sequence in context: A196616 A369104 A253271 * A120962 A355922 A261024
KEYWORD
nonn,cons
AUTHOR
STATUS
approved