login
A258943
Exponential reversion of Fibonacci numbers A000045.
0
1, -1, 1, 2, -25, 132, -209, -5104, 77121, -550000, -1212751, 104886144, -1708324409, 11026947008, 204999609375, -8086017144832, 130002259664321, -256459066769664, -50556576336151391, 1626772400000000000, -22785408268305809049, -251717732965479463936
OFFSET
1,4
FORMULA
a(n) = 5^((n-1)/2)*Gamma(n/2 - x)/Gamma(1 - n/2 - x) where x = sqrt(5)*n/10. - Wolfgang Berndt, Feb 19 2020
MATHEMATICA
length = 22; Range[length]! InverseSeries[Sum[Fibonacci[n] x^n/n!, {n, 1, length}] + O[x]^(length+1)][[3]]
Table[FullSimplify[5^((n-1)/2) * Gamma[(1 - 1/Sqrt[5])*n/2] / Gamma[1 - (1 + 1/Sqrt[5])*n/2]], {n, 1, 20}] (* Vaclav Kotesovec, Mar 23 2020 *)
PROG
(PARI) a(n) = {my(x=sqrt(5)*n/10); round(5^((n-1)/2)*gamma(n/2-x)/gamma(1-n/2-x))} \\ Wolfgang Berndt, Feb 19 2020
(PARI) seq(n)={Vec(serlaplace(serreverse(sum(k=1, n, fibonacci(k)*x^k/k!) + O(x*x^n))))} \\ Andrew Howroyd, Feb 26 2020
CROSSREFS
Cf. A000045.
Sequence in context: A226418 A196011 A080515 * A009381 A063264 A024533
KEYWORD
sign
AUTHOR
STATUS
approved