login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258940
Expansion of f(-x^8) * f(-x^12) * f(-x^24) * f(-x^2, -x^6)^2 / (f(-x^2) * f(-x^3, -x^5) * f(-x^3, -x^21)) in powers of x where f() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
0
1, 0, -1, 2, 1, -1, 1, 1, 0, 1, 0, 0, 2, 0, -1, 2, 1, -2, 1, 1, 0, 1, -1, 0, 3, 0, -1, 2, 1, -1, 1, 2, 0, 1, 0, 0, 2, -1, -2, 2, 1, -1, 0, 1, 0, 2, 0, 0, 2, -1, -1, 2, 2, -1, 1, 1, 0, 0, 1, 0, 2, 0, -2, 2, 1, -1, 2, 1, 0, 1, 0, 0, 2, 0, -1, 2, 0, -2, 1, 1, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Euler transform of period 24 sequence [ 0, -1, 2, 1, 1, -1, 0, -1, 0, -1, 1, 0, 1, -1, 0, -1, 0, -1, 1, 1, 2, -1, 0, -2, ...].
a(3*n + 2) = - A128582(n).
a(12*n + 8) = a(12*n + 11) = 0.
EXAMPLE
G.f. = 1 - x^2 + 2*x^3 + x^4 - x^5 + x^6 + x^7 + x^9 + 2*x^12 - x^14 + ...
G.f. = q - q^5 + 2*q^7 + q^9 - q^11 + q^13 + q^15 + q^19 + 2*q^25 - q^29 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[(1 - x^k)^-{ 0, -1, 2, 1, 1, -1, 0, -1, 0, -1, 1, 0, 1, -1, 0, -1, 0, -1, 1, 1, 2, -1, 0, -2}[[Mod[k, 24, 1]]], {k, n}], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 2, 0, 1, -2, -1, -1, 1, 0, 1, 0, 1, -1, 0, -1, 1, 0, 1, 0, 1, -1, -1, -2, 1, 0][k%24 + 1]), n))};
CROSSREFS
Cf. A128582.
Sequence in context: A335504 A037908 A116663 * A340607 A319659 A050372
KEYWORD
sign
AUTHOR
Michael Somos, Nov 07 2015
STATUS
approved