login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258937
Define f_i as the i-th iterate of A260187. a(n) is the least prime for which f_i(a(n)) is prime for all i such that 0 <= i < n and f_n(a(n)) is not prime.
0
2, 11, 41, 251, 2579, 32609, 543131, 10243031, 233336819, 6703033091, 207263540933, 7628002016027, 311878266460847, 13394639616667427, 628284422215925129, 33217442899664876729, 1955977793054900415107, 119244359152469819863541
OFFSET
1,1
COMMENTS
If p is prime, we replace p with A260187(p), until A260187(p) is not prime.
a(n) is the least prime for which the number of steps is n.
EXAMPLE
a(3) = 41, because A260187(41) = 11, A260187(11) = 5 are prime and A260187(5) = 1 is not prime.
Trajectories of the first few terms:
2->0
11->5->1
41->11->5->1
251->41->11->5->1
2579->269->59->29->5->1
32609->2579->269->59->29->5->1
543131->32621->2591->281->71->11->5->1
10243031->543341->32831->2801->491->71->11->5->1
233336819->10243949->544259->33749->3719->1409->149->29->5->1
6703033091->233339861->10246991->547301->36791->6761->2141->41->11->5->1.
PROG
(PARI) a260187(n)=my(t=1, k); forprime(p=2, , k=t*p; if(k>n, return(n%t), t=k));
isok(k, n) = {for (j=1, n-1, nk = 260187(k); if (! isprime(nk), return (0)); k = nk; ); ! isprime(a260187(k)); }
a(n) = {my(k = 2); while(! isok(k, n), k = nextprime(k+1)); k; } \\ Michel Marcus, Nov 16 2015
CROSSREFS
Sequence in context: A070778 A260267 A128241 * A347110 A225907 A107020
KEYWORD
nonn,more
AUTHOR
Jean-Marc Rebert, Nov 07 2015
STATUS
approved