login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258939
Expansion of f(-x^3, -x^5) * f(x^3, x^13) / (f(-x, -x^2) * f(-x^8, -x^16)) in powers of x where f(, ) is Ramanujan's general theta function.
2
1, 1, 2, 3, 5, 6, 9, 12, 17, 22, 30, 38, 51, 64, 83, 104, 133, 165, 208, 256, 319, 390, 481, 584, 715, 863, 1047, 1258, 1517, 1812, 2172, 2584, 3080, 3648, 4327, 5104, 6028, 7084, 8330, 9756, 11430, 13340, 15574, 18122, 21086, 24464, 28378, 32832, 37977, 43823
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Euler transform of period 32 sequence [ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, ...].
- a(n) = A029838(4*n + 2).
a(n) ~ sqrt(2*(1+sqrt(2))) * exp(Pi*sqrt(n/2)) / (16*n^(3/4)). - Vaclav Kotesovec, Nov 07 2015
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 17*x^8 + ...
G.f. = q^15 + q^47 + 2*q^79 + 3*q^111 + 5*q^143 + 6*q^175 + 9*q^207 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0}[[Mod[k, 32, 1]]], {k, n}], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1][k%32 + 1]), n))};
CROSSREFS
Cf. A029838.
Sequence in context: A329165 A292444 A035948 * A244747 A241742 A212584
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 07 2015
STATUS
approved