login
A258939
Expansion of f(-x^3, -x^5) * f(x^3, x^13) / (f(-x, -x^2) * f(-x^8, -x^16)) in powers of x where f(, ) is Ramanujan's general theta function.
2
1, 1, 2, 3, 5, 6, 9, 12, 17, 22, 30, 38, 51, 64, 83, 104, 133, 165, 208, 256, 319, 390, 481, 584, 715, 863, 1047, 1258, 1517, 1812, 2172, 2584, 3080, 3648, 4327, 5104, 6028, 7084, 8330, 9756, 11430, 13340, 15574, 18122, 21086, 24464, 28378, 32832, 37977, 43823
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Euler transform of period 32 sequence [ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, ...].
- a(n) = A029838(4*n + 2).
a(n) ~ sqrt(2*(1+sqrt(2))) * exp(Pi*sqrt(n/2)) / (16*n^(3/4)). - Vaclav Kotesovec, Nov 07 2015
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 17*x^8 + ...
G.f. = q^15 + q^47 + 2*q^79 + 3*q^111 + 5*q^143 + 6*q^175 + 9*q^207 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^-{ 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0}[[Mod[k, 32, 1]]], {k, n}], {x, 0, n}];
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^-[ 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1][k%32 + 1]), n))};
CROSSREFS
Cf. A029838.
Sequence in context: A329165 A292444 A035948 * A244747 A241742 A212584
KEYWORD
nonn
AUTHOR
Michael Somos, Nov 07 2015
STATUS
approved