login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258941
Convolution inverse of A058537.
5
1, -7, 41, -253, 1555, -9532, 58463, -358600, 2199546, -13491360, 82752059, -507576937, 3113328401, -19096245457, 117130782240, -718445946527, 4406737223117, -27029636742811, 165791883077354, -1016918901125280, 6237482995373629, -38258895644996020
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Convolution square is A328785. - Michael Somos, Nov 02 2019
LINKS
FORMULA
a(n) ~ (-1)^n * c * exp(Pi*n/sqrt(3)), where c = A258942 = 8*exp(Pi/(6*sqrt(3))) * Pi^(5/2) / Gamma(1/6)^3 = 1.09786330972731096865822482325074133091288... . - Vaclav Kotesovec, Nov 14 2015
Expansion of q^(-1/6)* eta[q]*eta[q^9]^2/(eta[q]^3 + 9*eta[q^9]^3) in powers of q. - G. C. Greubel, Jun 22 2018
Expansion of q^(-1/6) * 3^(-1/2) * sqrt(b(q)*c(q))/a(q) in powers of q where a(), b(), c() are cubic AGM functions. - Michael Somos, Nov 02 2019
EXAMPLE
G.f. = 1 - 7*x + 41*x^2 - 253*x^3 + 1555*x^4 - 9532*x^5 + ... - Michael Somos, Nov 02 2019
G.f. = q - 7*q^7 + 41*q^13 - 253*q^19 + 1555*q^25 - 9532*q^31 + ... - Michael Somos, Nov 02 2019
MATHEMATICA
CoefficientList[Series[QPochhammer[x, x] * QPochhammer[x^3, x^3]^2 / (QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3), {x, 0, 50}], x]
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/6)* eta[q]*eta[q^9]^2/(eta[q]^3 + 9*eta[q^9]^3), {q, 0, 60}], q] (* G. C. Greubel, Jun 22 2018 *)
a[ n_] := SeriesCoefficient[ QPochhammer[x] QPochhammer[x^3]^2 / (QPochhammer[x]^3 + 9 x QPochhammer[x^9]^3), {x, 0, n}]; (* Michael Somos, Nov 02 2019 *)
PROG
(PARI) q='q+O('q^50); A = eta(q)*eta(q^3)^2/(eta(q)^3 + 9*q*eta(q^9)^3); Vec(A) \\ G. C. Greubel, Jun 22 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Nov 07 2015
STATUS
approved