login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution inverse of A058537.
5

%I #21 Nov 03 2019 21:04:41

%S 1,-7,41,-253,1555,-9532,58463,-358600,2199546,-13491360,82752059,

%T -507576937,3113328401,-19096245457,117130782240,-718445946527,

%U 4406737223117,-27029636742811,165791883077354,-1016918901125280,6237482995373629,-38258895644996020

%N Convolution inverse of A058537.

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%C Convolution square is A328785. - _Michael Somos_, Nov 02 2019

%H Vaclav Kotesovec, <a href="/A258941/b258941.txt">Table of n, a(n) for n = 0..1260</a>

%F a(n) ~ (-1)^n * c * exp(Pi*n/sqrt(3)), where c = A258942 = 8*exp(Pi/(6*sqrt(3))) * Pi^(5/2) / Gamma(1/6)^3 = 1.09786330972731096865822482325074133091288... . - _Vaclav Kotesovec_, Nov 14 2015

%F Expansion of q^(-1/6)* eta[q]*eta[q^9]^2/(eta[q]^3 + 9*eta[q^9]^3) in powers of q. - _G. C. Greubel_, Jun 22 2018

%F Expansion of q^(-1/6) * 3^(-1/2) * sqrt(b(q)*c(q))/a(q) in powers of q where a(), b(), c() are cubic AGM functions. - _Michael Somos_, Nov 02 2019

%e G.f. = 1 - 7*x + 41*x^2 - 253*x^3 + 1555*x^4 - 9532*x^5 + ... - _Michael Somos_, Nov 02 2019

%e G.f. = q - 7*q^7 + 41*q^13 - 253*q^19 + 1555*q^25 - 9532*q^31 + ... - _Michael Somos_, Nov 02 2019

%t CoefficientList[Series[QPochhammer[x, x] * QPochhammer[x^3, x^3]^2 / (QPochhammer[x, x]^3 + 9*x*QPochhammer[x^9, x^9]^3), {x, 0, 50}], x]

%t eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-1/6)* eta[q]*eta[q^9]^2/(eta[q]^3 + 9*eta[q^9]^3), {q,0,60}], q] (* _G. C. Greubel_, Jun 22 2018 *)

%t a[ n_] := SeriesCoefficient[ QPochhammer[x] QPochhammer[x^3]^2 / (QPochhammer[x]^3 + 9 x QPochhammer[x^9]^3), {x, 0, n}]; (* _Michael Somos_, Nov 02 2019 *)

%o (PARI) q='q+O('q^50); A = eta(q)*eta(q^3)^2/(eta(q)^3 + 9*q*eta(q^9)^3); Vec(A) \\ _G. C. Greubel_, Jun 22 2018

%Y Cf. A058537, A051273, A058092, A115784, A258942, A328785.

%K sign

%O 0,2

%A _Vaclav Kotesovec_, Nov 07 2015