login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080047
Operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times l has to be repeatedly decreased in step L3.
5
0, 1, 7, 41, 256, 1807, 14477, 130321, 1303246, 14335751, 172029067, 2236377937, 31309291196, 469639368031, 7514229888601, 127741908106337, 2299354345914202, 43687732572369991, 873754651447399991
OFFSET
2,3
REFERENCES
D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.
FORMULA
a(2)=0, a(n) = n*a(n-1)+(n-1)*(n-2)/2 for n>=3 c = limit n--> infinity a(n)/n! = 0.35914091422952261768 = e/2-1, a(n) = floor [c*n! - (n-1)/2] for n>=2
E.g.f.: (2-exp(x)*(x^2-2*x+2))/(2*(x-1)). - Vaclav Kotesovec, Oct 21 2012
MATHEMATICA
Transpose[NestList[{First[#]+1, (First[#]+1)Last[#]+(First[#](First[#]-1))/2}&, {2, 0}, 20]][[2]] (* Harvey P. Dale, Feb 27 2012 *)
Rest[Rest[CoefficientList[Series[(2-Exp[x]*(x^2-2*x+2))/(2*(x-1)), {x, 0, 20}], x]*Range[0, 20]!]] (* Vaclav Kotesovec, Oct 21 2012 *)
PROG
FORTRAN program available at Pfoertner link.
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jan 25 2003
STATUS
approved