login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125120
Sum of values of repunits of length n in base b representation with 1<b<=n+1.
2
1, 7, 41, 296, 2829, 34637, 519049, 9197344, 188039787, 4356087231, 112754069273, 3224945523736, 100999970565337, 3437517630509497, 126332966608699441, 4986057436997869696, 210331809309776028055, 9443995455881145458715
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Repunit
FORMULA
a(n) = Sum_{k=1..n} Sum_{i=0..n-1} (k+1)^i. [Corrected by Mathew Englander, Dec 14 2020]
a(n) = Sum_{k=1..n} A125118(n,k).
a(n+1) - a(n) = A076015(n+1) + A228275(n+2, n). - Mathew Englander, Dec 14 2020
a(n) = Sum_{j=2..n+1} (j^n - 1)/(j-1)
EXAMPLE
a(4) = [1111]_2 + [1111]_3 + [1111]_4 + [1111]_5 = ((2+1)*2+1)*2+1 + ((3+1)*3+1)*3+1 + ((4+1)*4+1)*4+1 + ((5+1)*5+1)*5+1 = 296.
MATHEMATICA
Table[Sum[(k^n -1)/(k-1), {k, 2, n+1}], {n, 30}] (* G. C. Greubel, Aug 14 2022 *)
PROG
(PARI) a(n) = sum(k=1, n, sum(i=0, n-1, (k+1)^i)); \\ Michel Marcus, Dec 14 2020
(Magma) [(&+[(k^n -1)/(k-1): k in [2..n+1]]) : n in [1..30]]; // G. C. Greubel, Aug 14 2022
(SageMath) [sum(((k+1)^n -1)/k for k in (1..n)) for n in (1..30)] # G. C. Greubel, Aug 14 2022
CROSSREFS
Row sums of A125118.
Sequence in context: A080047 A297671 A356298 * A353992 A181441 A290044
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Nov 21 2006
STATUS
approved