login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079754 Operation count to create all permutations of n distinct elements using the "streamlined" version of Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of times l has to be repeatedly decreased in step L3.1'. 7
0, 1, 8, 54, 388, 3119, 28092, 280948, 3090464, 37085613, 482113024, 6749582402, 101243736108, 1619899777819, 27538296223028, 495689332014624, 9418097308277992, 188361946165559993, 3955600869476760024 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,3

COMMENTS

The asymptotic value for large n is 0.07742...*n! See also comment for A079884.

Lim_{n->infinity} a(n)/n! = 3*e/2 - 4. - Hugo Pfoertner, Sep 02 2017

REFERENCES

See under A079884

LINKS

Table of n, a(n) for n=3..21.

Hugo Pfoertner, FORTRAN program for lexicographic permutation generation

FORMULA

a(3)=0, a(n) = n*a(n-1) + (n-2)*(n-3)/2 for n>=4 a(n) = A079753(n) - A079752(n)

For n>=3 a(n)=floor(c*n!-(n-3)/2) where c=limit n --> infinity a(n)/n!=0.077422742688567853... - Benoit Cloitre, Jan 20 2003

MATHEMATICA

a[3] = 0; a[n_] := n*a[n - 1] + (n - 2)*(n - 3)/2; Table[a[n], {n, 3, 21}]

PROG

FORTRAN program available at link

CROSSREFS

Cf. A079884, A079750, A079751, A079752, A079753, A079755, A079756, A196533.

Sequence in context: A201640 A263885 A002775 * A298985 A142703 A138403

Adjacent sequences:  A079751 A079752 A079753 * A079755 A079756 A079757

KEYWORD

nonn

AUTHOR

Hugo Pfoertner, Jan 16 2003

EXTENSIONS

Edited and extended by Robert G. Wilson v, Jan 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 15:16 EDT 2021. Contains 345049 sequences. (Running on oeis4.)