login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079755 Operation count to create all permutations of n distinct elements using the "streamlined" version of Knuth's Algorithm L (lexicographic permutation generation). 8
0, 3, 23, 148, 1054, 8453, 76109, 761126, 8372436, 100469287, 1306100803, 18285411320, 274281169898, 4388498718473, 74604478214169, 1342880607855178, 25514731549248544, 510294630984971051 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,2
COMMENTS
Sequence gives number of loop repetitions in reversal step.
The asymptotic value for large n is 0.20975...*n! = (e + 1/e - 8/3)/2 * n!. See also comment for A079884.
REFERENCES
Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2.
See also under A079884.
LINKS
FORMULA
a(3) = 0, a(n) = n * a(n - 1) + (n - 1)*floor((n - 1)/2) for n >= 4.
a(n) = floor(c*n! - (n - 1)/2) for n > 4, where c = lim n -> infinity a(n)/n! = 0.209747301481910445... - Benoit Cloitre, Jan 19 2003
MATHEMATICA
a[3] = 0; a[n_] := n*a[n - 1] + (n - 1)*Floor[(n - 1)/2]; Table[a[n], {n, 3, 21}]
RecurrenceTable[{a[3]==0, a[n]==n*a[n-1]+(n-1)Floor[(n-1)/2]}, a, {n, 20}] (* Harvey P. Dale, May 31 2019 *)
PROG
FORTRAN program available at link.
CROSSREFS
Sequence in context: A198797 A057835 A232145 * A197176 A264461 A006184
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jan 16 2003
EXTENSIONS
More terms from Benoit Cloitre and Robert G. Wilson v, Jan 19 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 17:49 EDT 2023. Contains 365666 sequences. (Running on oeis4.)