|
|
A079755
|
|
Operation count to create all permutations of n distinct elements using the "streamlined" version of Knuth's Algorithm L (lexicographic permutation generation).
|
|
8
|
|
|
0, 3, 23, 148, 1054, 8453, 76109, 761126, 8372436, 100469287, 1306100803, 18285411320, 274281169898, 4388498718473, 74604478214169, 1342880607855178, 25514731549248544, 510294630984971051
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,2
|
|
COMMENTS
|
Sequence gives number of loop repetitions in reversal step.
The asymptotic value for large n is 0.20975...*n! = (e + 1/e - 8/3)/2 * n!. See also comment for A079884.
|
|
REFERENCES
|
Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2.
|
|
LINKS
|
|
|
FORMULA
|
a(3) = 0, a(n) = n * a(n - 1) + (n - 1)*floor((n - 1)/2) for n >= 4.
a(n) = floor(c*n! - (n - 1)/2) for n > 4, where c = lim n -> infinity a(n)/n! = 0.209747301481910445... - Benoit Cloitre, Jan 19 2003
|
|
MATHEMATICA
|
a[3] = 0; a[n_] := n*a[n - 1] + (n - 1)*Floor[(n - 1)/2]; Table[a[n], {n, 3, 21}]
RecurrenceTable[{a[3]==0, a[n]==n*a[n-1]+(n-1)Floor[(n-1)/2]}, a, {n, 20}] (* Harvey P. Dale, May 31 2019 *)
|
|
PROG
|
FORTRAN program available at link.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|