login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263885
Number of permutations of [n] containing exactly one occurrence of the consecutive pattern 132.
3
1, 8, 54, 368, 2649, 20544, 172596, 1569408, 15398829, 162412416, 1834081890, 22093090560, 282889238253, 3837991053312, 55010010678120, 830731742908416, 13185328329110745, 219457733809563648, 3822426663111579150, 69538569862816419840, 1318999546575572747265
OFFSET
3,2
LINKS
Eric Weisstein's World of Mathematics, Inverse Erf
FORMULA
a(n) = A197365(n,1).
a(n) ~ c * d^n * n! * n, where d = 1/A240885 = 1/(sqrt(2) * InverseErf(sqrt(2/Pi))) = 0.78397693120354749... and c = 0.679554202696108785... . - Vaclav Kotesovec, Oct 29 2015
EXAMPLE
a(3) = 1: 132.
a(4) = 8: 1243, 1324, 1423, 1432, 2143, 2431, 3142, 4132.
a(5) = 54: 12354, 12435, 12534, ..., 52431, 53142, 54132.
a(6) = 368: 123465, 123546, 123645, ..., 652431, 653142, 654132.
a(7) = 2649: 1234576, 1234657, 1234756, ..., 7652431, 7653142, 7654132.
MAPLE
b:= proc(u, o, t, c) option remember; `if`(u+o=0, c, add(
b(u-j, o+j-1, 0, c+`if`(j<=t, 1, 0)), j=`if`(c=1, t, 0)
+1..u) +add(b(u+j-1, o-j, j-1, c), j=1..o))
end:
a:= n-> b(n, 0$3):
seq(a(n), n=3..30);
MATHEMATICA
Drop[Coefficient[CoefficientList[Series[1/(1 - (Sqrt[Pi/2]*Erfi[(Sqrt[u-1]*x) / Sqrt[2]])/Sqrt[u-1]), {x, 0, 25}], x] * Range[0, 25]!, u], 3] (* Vaclav Kotesovec, Oct 29 2015 *)
CROSSREFS
Column k=1 of A197365.
Sequence in context: A289796 A287814 A201640 * A002775 A079754 A347274
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 28 2015
STATUS
approved