OFFSET
2,2
COMMENTS
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.
LINKS
Robert Israel, Table of n, a(n) for n = 2..260
C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical Journal, 1 (1819), 46-49.
R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
J. Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, 269-277, CANT 2015 and 2016, New York, 2017; arXiv:1812.07650 [math.NT], 2018.
Wikipedia, Wolstenholme's theorem
J. Wolstenholme, On certain properties of prime numbers, Quarterly Journal of Pure and Applied Mathematics, 5 (1862), 35-39.
EXAMPLE
a(2) = (binomial(2*3-1,3-1) - 1)/3^2 = (binomial(5,2) - 1)/9 = (10-1)/9 = 1.
MAPLE
map(p -> (binomial(2*p-1, p-1)-1)/p^2, select(isprime, [seq(i, i=3..100, 2)])); # Robert Israel, Nov 24 2015
MATHEMATICA
Table[(Binomial[2*Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^2, {n, 2, 17}]
Table[(Binomial[2p-1, p-1]-1)/p^2, {p, Prime[Range[2, 20]]}] (* Harvey P. Dale, Jul 20 2019 *)
PROG
(Magma) [(Binomial(2*NthPrime(n)-1, NthPrime(n)-1)-1)/NthPrime(n)^2: n in [2..20]]; // Vincenzo Librandi, Nov 25 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Nov 22 2015
STATUS
approved