login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263882
Babbage quotients b_p = (binomial(2p-1, p-1) - 1)/p^2 with p = prime(n).
4
1, 5, 35, 2915, 30771, 4037381, 48954659, 7782070631, 17875901604959, 242158352370063, 637739431824553035, 126348774791431208099, 1794903484322270273951, 367972191114796344623951, 1116504994413003106003899551, 3498520498083111051973370669639
OFFSET
2,2
COMMENTS
Charles Babbage proved in 1819 that b_p is an integer for prime p > 2. In 1862 Wolstenholme proved that the Wolstenholme quotient W_p = b_p / p is an integer for prime p > 3; see A034602.
The quotient b_n is an integer for composite n in A267824. No composite n is known for which W_n is an integer.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Sect. B31.
LINKS
C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Philosophical Journal, 1 (1819), 46-49.
J. Sondow, Extending Babbage's (non-)primality tests, in Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, 269-277, CANT 2015 and 2016, New York, 2017; arXiv:1812.07650 [math.NT], 2018.
J. Wolstenholme, On certain properties of prime numbers, Quarterly Journal of Pure and Applied Mathematics, 5 (1862), 35-39.
FORMULA
a(n) = prime(n)*A034602(n) for n > 2.
a(PrimePi(A088164(n))) == 0 mod A088164(n)^2.
EXAMPLE
a(2) = (binomial(2*3-1,3-1) - 1)/3^2 = (binomial(5,2) - 1)/9 = (10-1)/9 = 1.
MAPLE
map(p -> (binomial(2*p-1, p-1)-1)/p^2, select(isprime, [seq(i, i=3..100, 2)])); # Robert Israel, Nov 24 2015
MATHEMATICA
Table[(Binomial[2*Prime[n] - 1, Prime[n] - 1] - 1)/Prime[n]^2, {n, 2, 17}]
Table[(Binomial[2p-1, p-1]-1)/p^2, {p, Prime[Range[2, 20]]}] (* Harvey P. Dale, Jul 20 2019 *)
PROG
(Magma) [(Binomial(2*NthPrime(n)-1, NthPrime(n)-1)-1)/NthPrime(n)^2: n in [2..20]]; // Vincenzo Librandi, Nov 25 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Nov 22 2015
STATUS
approved