login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Dickman's constant C_4.
1

%I #19 Oct 10 2020 05:00:11

%S 0,6,7,6,4,5,2,0,2,1,0,6,9,4,6,1,3,6,9,6,9,7,5,0,2,3,1,0,3,3,8,2,2,9,

%T 9,3,9,2,3,4,2,1,9,3,4,4,9,4,9,2,0,4,3,1,7,3,0,1,8,6,0,1,3,4,6,5,2,5,

%U 7,5,3,8,5,1,1,6,8,5,5,5,2,9,0,9,8,0,6,8,5,2,2,4,6,3,5,6,2,4,4,8,2,7,0,6

%N Decimal expansion of Dickman's constant C_4.

%H David Broadhurst, <a href="http://arxiv.org/abs/1004.0519">Dickman polylogarithms and their constants</a> arXiv:1004.0519 [math-ph], 2010.

%F C_1 = 0, C_2 = -Pi^2/12, C_3 = -zeta(3)/3.

%F C_4 = Integral_{0..1/2} (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)^2*polylog(1, -2*x))/(x*(x+1)) dx + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(Pi^2 - 9*log(2)^2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + Pi^2*(log(2)^2/24) - Pi^2*log(2)*(log(3)/6) + log(2)^3*log(3)/2 - 5*log(2)^4/8.

%F Also (conjecturally) equals Pi^4/1440.

%e 0.067645202106946136969750231033822993923421934494920431730186...

%t digits = 103; C4 = NIntegrate[(Log[x/(2*x+1)]*PolyLog[2, x] + (1/2)*Log[x]^2* PolyLog[1, -2*x])/(x*(x+1)), {x, 0, 1/2}, WorkingPrecision -> digits+5] + 3*PolyLog[4, 1/2] - 3/8 *PolyLog[4, 1/4] - 3/4* Log[2]*PolyLog[3, 1/4] + (Pi^2 - 9*Log[2]^2)/12*PolyLog[2, 1/4] + 21*Log[2]*Zeta[3]/8 + Pi^2*(Log[2]^2/24) - Pi^2*Log[2]*(Log[3]/6) + Log[2]^3*Log[3]/2 - 5*Log[2]^4/8; Join[{0}, RealDigits[C4, 10, digits] // First]

%o (Python)

%o from mpmath import mp, log, polylog, zeta, pi, quad

%o mp.dps=104

%o f=lambda x: (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)**2*polylog(1, -2*x))/(x*(x+1))

%o I=quad(f, [0, 1/2]) + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(pi**2 - 9*log(2)**2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + pi**2*(log(2)**2/24) - pi**2*log(2)*(log(3)/6) + log(2)**3*log(3)/2 - 5*log(2)**4/8

%o print([int(z) for z in list(str(I)[2:-1])]) # _Indranil Ghosh_, Jul 03 2017

%Y Cf. A175475, A245238.

%K nonn,cons

%O 0,2

%A _Jean-François Alcover_, Jun 15 2015