login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/2)} 2^((n-2*k)*k) for n>=0.
3

%I #15 Sep 08 2022 08:45:24

%S 1,1,2,3,6,13,34,105,386,1681,8706,53793,395266,3442753,35659778,

%T 440672385,6476038146,112812130561,2336999211010,57759810847233,

%U 1697654543745026,59146046307566593,2450521284684021762

%N a(n) = Sum_{k=0..floor(n/2)} 2^((n-2*k)*k) for n>=0.

%C Equals the antidiagonal sums of triangle A117401.

%H G. C. Greubel, <a href="/A117403/b117403.txt">Table of n, a(n) for n = 0..150</a>

%F G.f.: A(x) = Sum_{n>=0} x^n / (1 - 2^n*x^2).

%F a(2*n) = Sum_{k=0..n} 4^((n-k)*k).

%F a(2*n+1) = Sum_{k=0..n} 2^k * 4^((n-k)*k).

%F G.f.: 1/(1-x^2) - x/(Q(0) +x-x^3), where Q(k) = x^2*(2+x)*2^k -1-x - x*(2*x^2*2^k -1)^2/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Nov 11 2013

%e G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 13*x^5 + 34*x^6 + 105*x^7 + ...

%e where

%e A(x) = 1/(1-x^2) + x/(1-2*x^2) + x^2/(1-4*x^2) + x^3/(1-8*x^2) + x^4/(1-16*x^2) + ...

%t Table[Sum[2^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* _G. C. Greubel_, Jun 28 2021 *)

%o (PARI) a(n) = sum(k=0,n\2,2^((n-2*k)*k))

%o (PARI) {a(n) = polcoeff(sum(m=0,n,x^m/(1-2^m*x^2 +x*O(x^n))),n)}

%o for(n=0,30,print1(a(n),", "))

%o (Magma) [(&+[2^(k*(n-2*k)) : k in [0..Floor(n/2)]]): n in [0..30]]; // _G. C. Greubel_, Jun 28 2021

%o (Sage) [sum(2^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # _G. C. Greubel_, Jun 28 2021

%Y Cf. A117401 (triangle), A117402 (row sums).

%K nonn

%O 0,3

%A _Paul D. Hanna_, Mar 12 2006

%E Name changed by _Paul D. Hanna_, Nov 11 2013