login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372067
Array read by antidiagonals: T(m,n) (m >= 0, n >= 0) = number of connected row convex (CRC) constraints between an m-element set and an n-element set.
3
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 56, 56, 16, 1, 1, 32, 176, 289, 176, 32, 1, 1, 64, 512, 1231, 1231, 512, 64, 1, 1, 128, 1408, 4623, 6655, 4623, 1408, 128, 1, 1, 256, 3712, 15887, 30553, 30553, 15887, 3712, 256, 1, 1, 512, 9472, 51103, 125197, 166186, 125197, 51103, 9472, 512, 1
OFFSET
0,5
COMMENTS
See the Knuth "Notes" link for much more information about these sequences. The present sequence is called "table" in Part 1 of the Notes.
REFERENCES
Yves Deville, Olivier Barette, Pascal Van Hentenryck, Constraint satisfaction over connected row-convex constraints, Artificial Intelligence 109 (1999), 243-271.
Peter Jeavons, David Cohen, Martin C. Cooper, Constraints, consistency and closure". Artificial Intelligence 101 (1998), 251-265.
FORMULA
Knuth gives a formula expressing the current array in terms of the array A372066.
EXAMPLE
The initial antidiagonals are:
1,
1, 1,
1, 2, 1,
1, 4, 4, 1,
1, 8, 16, 8, 1,
1, 16, 56, 56, 16, 1,
1, 32, 176, 289, 176, 32, 1,
1, 64, 512, 1231, 1231, 512, 64, 1,
1, 128, 1408, 4623, 6655, 4623, 1408, 128, 1,
1, 256, 3712, 15887, 30553, 30553, 15887, 3712, 256, 1,
1, 512, 9472, 51103, 125197, 166186, 125197, 51103, 9472, 512, 1,
...
The array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ...
1, 4, 16, 56, 176, 512, 1408, 3712, 9472, 23552, ...
1, 8, 56, 289, 1231, 4623, 15887, 51103, 156159, 457983, ...
1, 16, 176, 1231, 6655, 30553, 125197, 471581, 1664061, 5572733, ...
1, 32, 512, 4623, 30553, 166186, 790250, 3402874, 13570090, 50887322, ...
1, 64, 1408, 15887, 125197, 790250, 4283086, 20750168, 92177312, 382005370, ...
1, 128, 3712, 51103, 471581, 3402874, 20750168, 111803585, 547505091, 2483709151, ...
1, 256, 9472, 156159, 1664061, 13570090, 92177312, 547505091, 2932069965, 14453287777, ...
1, 512, 23552, 457983, 5572733, 50887322, 382005370, 2483709151, 14453287777, 76964939964, ...
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 12 2024, based on emails from Don Knuth, May 06 2024 and May 08 2024
STATUS
approved