login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172342
Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=5.
2
1, 1, 1, 1, 5, 1, 1, 26, 26, 1, 1, 135, 702, 135, 1, 1, 701, 18927, 18927, 701, 1, 1, 3640, 510328, 2649780, 510328, 3640, 1, 1, 18901, 13759928, 370988828, 370988828, 13759928, 18901, 1, 1, 98145, 371007729, 51941082060, 269708877956
OFFSET
0,5
COMMENTS
Start from the generalized Fibonacci sequence A052918 and its partial products c(n) = 1, 1, 5, 130, 17550, 12302550, 44781282000,... Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are 1, 2, 7, 54, 974, 39258, 3677718, 769535316, 374333253826, 406720191959532,...
EXAMPLE
1;
1, 1;
1, 5, 1;
1, 26, 26, 1;
1, 135, 702, 135, 1;
1, 701, 18927, 18927, 701, 1;
1, 3640, 510328, 2649780, 510328, 3640, 1;
1, 18901, 13759928, 370988828, 370988828, 13759928, 18901, 1;
1, 98145, 371007729, 51941082060, 269708877956, 51941082060, 371007729, 98145, 1;
MATHEMATICA
Clear[f, c, a, t];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = a*f[n - 1, a] + f[n - 2, a];
c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]
CROSSREFS
Cf. A010048 (m=1), A099927 (m=2), A172339 (m=3), A172343 (m=6).
Sequence in context: A203346 A176793 A118190 * A143213 A172377 A156587
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Feb 01 2010
STATUS
approved