login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152572
Triangle T(n,k) read by rows: T(n,n) = -1, T(n,0) = 5^(n - 1), T(n,k) = -5^(n - k - 1), 1 <= k <= n - 1
3
-1, 1, -1, 5, -1, -1, 25, -5, -1, -1, 125, -25, -5, -1, -1, 625, -125, -25, -5, -1, -1, 3125, -625, -125, -25, -5, -1, -1, 15625, -3125, -625, -125, -25, -5, -1, -1, 78125, -15625, -3125, -625, -125, -25, -5, -1, -1, 390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1
OFFSET
0,4
FORMULA
From Franck Maminirina Ramaharo, Jan 08 2019: (Start)
G.f.: -(1 - 6*y + 2*x*y^2)/(1 - (5 + x)*y + 5*x*y^2).
E.g.f.: -(10 - 2*x - (5 - 2*x)*exp(5*y) + (20 - 5*x)*exp(x*y))/(25 - 5*x). (End)
EXAMPLE
Triangle begins:
-1;
1, -1;
5, -1, -1;
25, -5, -1, -1;
125, -25, -5, -1, -1;
625, -125, -25, -5, -1, -1;
3125, -625, -125, -25, -5, -1, -1;
15625, -3125, -625, -125, -25, -5, -1, -1;
78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
1953125, -390625, -78125, -15625, -3125, -625, -125, -25, -5, -1, -1;
...
MATHEMATICA
b[0] = {-1}; b[1] = {1, -1};
b[n_] := b[n] = Join[{5^(n - 1)}, {-b[n - 1][[1]]}, Table[b[n - 1][[i]], {i, 2, Length[b[n - 1]]}]];
Flatten[Table[b[n], {n, 0, 10}]]
PROG
(Maxima)
T(n, k) := if k = n then -1 else if k = 0 then 5^(n - 1) else -5^(n - k - 1);
create_list(T(n, k), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Jan 08 2019 */
CROSSREFS
Row sums (except row 0): A125833.
Sequence in context: A157212 A156600 A329118 * A203346 A176793 A118190
KEYWORD
sign,easy,tabl
AUTHOR
Roger L. Bagula, Dec 08 2008
EXTENSIONS
Edited by Franck Maminirina Ramaharo, Jan 08 2019
STATUS
approved