login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125833
Numbers whose base-5 representation is 333333.......3.
5
0, 3, 18, 93, 468, 2343, 11718, 58593, 292968, 1464843, 7324218, 36621093, 183105468, 915527343, 4577636718, 22888183593, 114440917968, 572204589843, 2861022949218, 14305114746093, 71525573730468, 357627868652343
OFFSET
0,2
FORMULA
a(n) = 3*(5^n - 1)/4.
a(n) = 5*a(n-1) + 3 for n > 0, a(0)=0. - Vincenzo Librandi, Sep 30 2010
From G. C. Greubel, Aug 03 2019: (Start)
a(n) = 3*A003463(n).
G.f.: 3*x/((1-x)*(1-5*x)).
E.g.f.: 3*(exp(5*x) - exp(x))/4. (End)
EXAMPLE
Base 5.................decimal
0.........................0
3.........................3
33.......................18
333......................93
3333....................468
33333..................2343
333333................11718
3333333...............58593
33333333.............292968, etc.
MAPLE
seq(3*(5^n-1)/4, n=0..30);
MATHEMATICA
Table[FromDigits[PadRight[{}, n, 3], 5], {n, 0, 30}] (* or *) LinearRecurrence[ {6, -5}, {0, 3}, 30] (* Harvey P. Dale, Sep 23 2016 *)
3*(5^Range[0, 30] -1)/4 (* G. C. Greubel, Aug 03 2019 *)
PROG
(PARI) vector(30, n, n--; 3*(5^n -1)/4) \\ G. C. Greubel, Aug 03 2019
(Magma) [3*(5^n -1)/4: n in [0..30]]; // G. C. Greubel, Aug 03 2019
(Sage) [3*(5^n -1)/4 for n in (0..30)] # G. C. Greubel, Aug 03 2019
(GAP) List([0..30], n-> 3*(5^n -1)/4); G. C. Greubel, Aug 03 2019
CROSSREFS
Cf. A003463.
Sequence in context: A064671 A363647 A058409 * A129547 A081151 A132848
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Feb 03 2007
STATUS
approved