OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (6,-5).
FORMULA
a(n) = 3*(5^n - 1)/4.
a(n) = 5*a(n-1) + 3 for n > 0, a(0)=0. - Vincenzo Librandi, Sep 30 2010
From G. C. Greubel, Aug 03 2019: (Start)
a(n) = 3*A003463(n).
G.f.: 3*x/((1-x)*(1-5*x)).
E.g.f.: 3*(exp(5*x) - exp(x))/4. (End)
EXAMPLE
Base 5.................decimal
0.........................0
3.........................3
33.......................18
333......................93
3333....................468
33333..................2343
333333................11718
3333333...............58593
33333333.............292968, etc.
MAPLE
seq(3*(5^n-1)/4, n=0..30);
MATHEMATICA
Table[FromDigits[PadRight[{}, n, 3], 5], {n, 0, 30}] (* or *) LinearRecurrence[ {6, -5}, {0, 3}, 30] (* Harvey P. Dale, Sep 23 2016 *)
3*(5^Range[0, 30] -1)/4 (* G. C. Greubel, Aug 03 2019 *)
PROG
(PARI) vector(30, n, n--; 3*(5^n -1)/4) \\ G. C. Greubel, Aug 03 2019
(Magma) [3*(5^n -1)/4: n in [0..30]]; // G. C. Greubel, Aug 03 2019
(Sage) [3*(5^n -1)/4 for n in (0..30)] # G. C. Greubel, Aug 03 2019
(GAP) List([0..30], n-> 3*(5^n -1)/4); G. C. Greubel, Aug 03 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Feb 03 2007
STATUS
approved