login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers whose base-5 representation is 333333.......3.
5

%I #21 Feb 04 2023 12:27:03

%S 0,3,18,93,468,2343,11718,58593,292968,1464843,7324218,36621093,

%T 183105468,915527343,4577636718,22888183593,114440917968,572204589843,

%U 2861022949218,14305114746093,71525573730468,357627868652343

%N Numbers whose base-5 representation is 333333.......3.

%H G. C. Greubel, <a href="/A125833/b125833.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-5).

%F a(n) = 3*(5^n - 1)/4.

%F a(n) = 5*a(n-1) + 3 for n > 0, a(0)=0. - _Vincenzo Librandi_, Sep 30 2010

%F From _G. C. Greubel_, Aug 03 2019: (Start)

%F a(n) = 3*A003463(n).

%F G.f.: 3*x/((1-x)*(1-5*x)).

%F E.g.f.: 3*(exp(5*x) - exp(x))/4. (End)

%e Base 5.................decimal

%e 0.........................0

%e 3.........................3

%e 33.......................18

%e 333......................93

%e 3333....................468

%e 33333..................2343

%e 333333................11718

%e 3333333...............58593

%e 33333333.............292968, etc.

%p seq(3*(5^n-1)/4, n=0..30);

%t Table[FromDigits[PadRight[{},n,3],5],{n,0,30}] (* or *) LinearRecurrence[ {6,-5},{0,3},30] (* _Harvey P. Dale_, Sep 23 2016 *)

%t 3*(5^Range[0,30] -1)/4 (* _G. C. Greubel_, Aug 03 2019 *)

%o (PARI) vector(30, n, n--; 3*(5^n -1)/4) \\ _G. C. Greubel_, Aug 03 2019

%o (Magma) [3*(5^n -1)/4: n in [0..30]]; // _G. C. Greubel_, Aug 03 2019

%o (Sage) [3*(5^n -1)/4 for n in (0..30)] # _G. C. Greubel_, Aug 03 2019

%o (GAP) List([0..30], n-> 3*(5^n -1)/4); _G. C. Greubel_, Aug 03 2019

%Y Cf. A003463.

%K nonn,easy

%O 0,2

%A _Zerinvary Lajos_, Feb 03 2007