login
A129547
a(n)= n! - (n-1)!! - a(n-1), with a(1)=1!-0!!=0.
0
0, 1, 3, 18, 94, 611, 4381, 35834, 326662, 3301193, 36611767, 442379438, 5784595282, 81393560783, 1226280162097, 19696507698878, 335990910075202, 6066382761193373, 115578717461844067, 2317323290060066858
OFFSET
0,3
FORMULA
a(n)= n! - (n-1)!! - a(n-1), with a(1)=1!-0!!=0. a(n)=abs{sum{i=1..n,[(n-i+1)!-(n-i)!! ]*(-1)^i}}
EXAMPLE
a(1)=1!-0!!=1-1=0
a(2)=2!-1!!-1!+0!!=2-1-1+1=1
a(3)=3!-2!!-2!+1!!+1!-0!!=6-2-2+1+1-1=3
a(4)=4!-3!!-3!+2!!+2!-1!!-1!+0!!=24-3-6+2+2-1-1+1=18
a(5)=5!-4!!-4!+3!!+3!-2!!-2!+1!!+1!-0!!=120-8-24+3+6-2-2+1+1-1=94
MAPLE
P:=proc(n) local a, i, k, w; print(0); a:=0; for i from 2 by 1 to n do k:=i-1; w:=i-3; while w>0 do k:=k*w; w:=w-2; od; a:=(i!-k)-a; print(a); od; end: P(50);
CROSSREFS
Sequence in context: A363647 A058409 A125833 * A081151 A132848 A321032
KEYWORD
nonn
AUTHOR
STATUS
approved