login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129548
Measures of entanglement in 3-qbits.
4
1, 1, 8, 9, 36, 43, 120, 147, 329, 406, 784, 966, 1680, 2058, 3312, 4026, 6105, 7359, 10648, 12727, 17732, 21021, 28392, 33397, 43953, 51324, 66080, 76636, 96832, 111588, 138720, 158916, 194769, 221901, 268584, 304437, 364420, 411103, 487256, 547239, 642873
OFFSET
0,3
REFERENCES
David Meyer and Nolan Wallach, Invariants for multiple qubits: the case of 3 qubits, Mathematics of quantum computing, Computational Mathematics Series, 77-98, Chapman & Hall/CRC Press, 2002.
LINKS
Nolan Wallach, The Hilbert series of measures of entanglement for 4 q-bits, Acta Appl. Math. 86(2005), 203-220.
Index entries for linear recurrences with constant coefficients, signature (2,4,-10,-5,20,0,-20,5,10,-4,-2,1).
FORMULA
a(n) = [x^(2n)] (1+x^4)*(1+x^4+x^8)/((1-x^2)*(1-x^4)^5*(1-x^6)).
a(n) = (2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(2*n+11+(-1)^n)*(2*n^3+27*n^2+169*n+387-3*(n^2-5*n-31)*(-1)^n)/184320. - Luce ETIENNE, Oct 15 2015.
From Colin Barker, Oct 15 2015: (Start)
a(n) = (n^6+24*n^5+280*n^4+1920*n^3+7504*n^2+14976*n+11520)/11520 (n even).
a(n) = (n^6+24*n^5+235*n^4+1200*n^3+3319*n^2+4536*n+2205)/11520 (n odd).
G.f.: -(x^2-x+1)*(x^2+1) / ((x-1)^7*(x+1)^5). (End)
a(n) = 2*a(n-1)+4*(n-2)-10*a(n-3)-5*a(n-4)+20*a(n-5)-20*a(n-7)+5*a(n-8)+10*a(n-9)-4*a(n-10)-2*a(n-11)+a(n-12) for n>11. - Wesley Ivan Hurt, Oct 15 2015
MAPLE
A129548:=n->(2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(2*n+11+(-1)^n)*(2*n^3+27*n^2+169*n+387-3*(n^2-5*n-31)*(-1)^n)/184320: seq(A129548(n), n=0..50); # Wesley Ivan Hurt, Oct 15 2015
MATHEMATICA
CoefficientList[Series[(x^2 - x + 1)*(x^2 + 1)/((1 - x)^7*(x + 1)^5), {x, 0, 50}], x] (* Wesley Ivan Hurt, Oct 15 2015 *)
PROG
(PARI) Vec(-(x^2-x+1)*(x^2+1)/((x-1)^7*(x+1)^5) + O(x^50)) \\ Colin Barker, Oct 15 2015
(Magma) [(2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(2*n+11+(-1)^n)*(2*n^3+27*n^2+169*n+387-3*(n^2-5*n-31)*(-1)^n)/184320 : n in [0..50]]; // Wesley Ivan Hurt, Oct 15 2015
CROSSREFS
Sequence in context: A041136 A041915 A036764 * A322797 A075079 A317379
KEYWORD
nonn,easy
AUTHOR
Mike Zabrocki, Apr 20 2007
STATUS
approved