Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:30
%S 1,1,8,9,36,43,120,147,329,406,784,966,1680,2058,3312,4026,6105,7359,
%T 10648,12727,17732,21021,28392,33397,43953,51324,66080,76636,96832,
%U 111588,138720,158916,194769,221901,268584,304437,364420,411103,487256,547239,642873
%N Measures of entanglement in 3-qbits.
%D David Meyer and Nolan Wallach, Invariants for multiple qubits: the case of 3 qubits, Mathematics of quantum computing, Computational Mathematics Series, 77-98, Chapman & Hall/CRC Press, 2002.
%H Colin Barker, <a href="/A129548/b129548.txt">Table of n, a(n) for n = 0..1000</a>
%H Nolan Wallach, <a href="http://dx.doi.org/10.1007/s10440-005-0471-3">The Hilbert series of measures of entanglement for 4 q-bits</a>, Acta Appl. Math. 86(2005), 203-220.
%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,-10,-5,20,0,-20,5,10,-4,-2,1).
%F a(n) = [x^(2n)] (1+x^4)*(1+x^4+x^8)/((1-x^2)*(1-x^4)^5*(1-x^6)).
%F a(n) = (2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(2*n+11+(-1)^n)*(2*n^3+27*n^2+169*n+387-3*(n^2-5*n-31)*(-1)^n)/184320. - _Luce ETIENNE_, Oct 15 2015.
%F From _Colin Barker_, Oct 15 2015: (Start)
%F a(n) = (n^6+24*n^5+280*n^4+1920*n^3+7504*n^2+14976*n+11520)/11520 (n even).
%F a(n) = (n^6+24*n^5+235*n^4+1200*n^3+3319*n^2+4536*n+2205)/11520 (n odd).
%F G.f.: -(x^2-x+1)*(x^2+1) / ((x-1)^7*(x+1)^5). (End)
%F a(n) = 2*a(n-1)+4*(n-2)-10*a(n-3)-5*a(n-4)+20*a(n-5)-20*a(n-7)+5*a(n-8)+10*a(n-9)-4*a(n-10)-2*a(n-11)+a(n-12) for n>11. - _Wesley Ivan Hurt_, Oct 15 2015
%p A129548:=n->(2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(2*n+11+(-1)^n)*(2*n^3+27*n^2+169*n+387-3*(n^2-5*n-31)*(-1)^n)/184320: seq(A129548(n), n=0..50); # _Wesley Ivan Hurt_, Oct 15 2015
%t CoefficientList[Series[(x^2 - x + 1)*(x^2 + 1)/((1 - x)^7*(x + 1)^5), {x, 0, 50}], x] (* _Wesley Ivan Hurt_, Oct 15 2015 *)
%o (PARI) Vec(-(x^2-x+1)*(x^2+1)/((x-1)^7*(x+1)^5) + O(x^50)) \\ _Colin Barker_, Oct 15 2015
%o (Magma) [(2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(2*n+11+(-1)^n)*(2*n^3+27*n^2+169*n+387-3*(n^2-5*n-31)*(-1)^n)/184320 : n in [0..50]]; // _Wesley Ivan Hurt_, Oct 15 2015
%Y Cf. A000217, A129549.
%K nonn,easy
%O 0,3
%A _Mike Zabrocki_, Apr 20 2007