login
A322797
Powerful tau numbers.
1
1, 8, 9, 36, 72, 108, 128, 225, 288, 441, 625, 864, 972, 1089, 1152, 1521, 1800, 1944, 2000, 2025, 2601, 2700, 3249, 3456, 3528, 3600, 4500, 4761, 5000, 5292, 5625, 6561, 6912, 7569, 7776, 8100, 8649, 8712, 10000, 10800, 12168, 12321, 12348, 13068, 15129, 16000, 16200, 16641, 18000
OFFSET
1,2
COMMENTS
If the largest exponent among the prime factors of a(n) does not exceed 2 then A046692(a(n)) = sqrt(a(n)), otherwise A046692(a(n)) = 0.
LINKS
EXAMPLE
1 is a term because A033950(1) = A001694(1) = 1.
8 is a term because A033950(8) divides A001694(3).
9 is a term because A033950(9) divides A001694(4).
36 is a term because A033950(36) divides A001694(9).
MATHEMATICA
powtauQ[1] = True; powtauQ[n_] := Min[e = (Last /@ FactorInteger[n])] > 1 && Divisible[n, Times @@ (e + 1)]; Select[Range[18000], powtauQ] (* Amiram Eldar, Dec 30 2019 *)
PROG
(PARI) isok(n) = ispowerful(n) && ((n % numdiv(n)) == 0); \\ Michel Marcus, Jan 16 2019
CROSSREFS
Intersection of A001694 (powerful numbers) and A033950 (tau numbers).
Sequence in context: A041915 A036764 A129548 * A075079 A317379 A376120
KEYWORD
nonn
AUTHOR
Torlach Rush, Jan 10 2019
EXTENSIONS
Corrected and extended by Michel Marcus, Jan 16 2019
STATUS
approved