The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001494 Numbers k such that phi(k) = phi(k+2). (Formerly M3293 N1328) 17
 4, 7, 8, 10, 26, 32, 70, 74, 122, 146, 308, 314, 386, 512, 554, 572, 626, 635, 728, 794, 842, 910, 914, 1015, 1082, 1226, 1322, 1330, 1346, 1466, 1514, 1608, 1754, 1994, 2132, 2170, 2186, 2306, 2402, 2426, 2474, 2590, 2642, 2695, 2762, 2906, 3242, 3314 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If p and 2p-1 are odd primes then 2*(2p-1) is a solution of the equation. Other terms (7,8,32,70,...) are not of this form. There are 506764111 terms under 10^12. - Jud McCranie, Feb 13 2012 If 2^(2^m) + 1 is a Fermat prime in A019434, so, m = 0, 1, 2, 3, 4, then k = 2^(2^m + 1) is a term; this subsequence consists of {4, 8, 32, 512, 131072} and, in this case, phi(k) = phi(k+2) = 2^(2^m). - Bernard Schott, Apr 22 2022 REFERENCES D. M. Burton, Elementary Number Theory, section 7-2. R. K. Guy, Unsolved Problems Number Theory, Sect. B36. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe and Jud McCranie, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe) Kevin Ford, Solutions of phi(n)=phi(n+k) and sigma(n)=sigma(n+k), arXiv:2002.12155 [math.NT], 2020. M. F. Hasler, Table of n, a(n) for n = 1..17286. (Terms up to 10^7.) V. L. Klee, Jr., Some remarks on Euler's totient function, Amer. Math. Monthly, 54 (1947), 332. Leo Moser, Some equations involving Euler's totient function, Amer. Math. Monthly, 56 (1949), 22-23. FORMULA A000010(a(n)) = A000010(a(n) + 2). - Reinhard Zumkeller, Feb 08 2013 MAPLE with(numtheory): P:=proc(n) if phi(n)=phi(n+2) then n; fi; end: seq(P(i), i=1..3400); # Paolo P. Lava, Mar 02 2018 MATHEMATICA Select[Range, EulerPhi[#]==EulerPhi[#+2]&] (* Harvey P. Dale, Apr 24 2011 *) Flatten[Position[Partition[EulerPhi[Range], 3, 1], _?(#[]==#[]&), {1}, Heads->False]] (* This program is more efficient than the first program above because it only has to calculate phi of each number once. *) (* Harvey P. Dale, Aug 20 2014 *) SequencePosition[EulerPhi[Range], {x_, _, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 04 2020 *) PROG (PARI) op=[0, c=0]; for( n=1, 1e7, if( op[bittest(n, 0)+1]+0==op[bittest(n, 0)+1]=eulerphi(n), write("b001494.txt", c++, " "n-2))) \\ M. F. Hasler, Jan 05 2011 (Haskell) import Data.List (elemIndices) a001494 n = a001494_list !! (n-1) a001494_list = map (+ 1) \$ elemIndices 0 \$ zipWith (-) (drop 2 a000010_list) a000010_list -- Reinhard Zumkeller, Feb 08 2013 (Magma) [n: n in [1..4000] | EulerPhi(n) eq EulerPhi(n+2)]; // Vincenzo Librandi, Sep 07 2016 CROSSREFS Cf. A000010, A001274, A007015, A179186, A179187, A179188, A179189, A179202, A217139. Sequence in context: A084791 A310933 A186712 * A092214 A319926 A128373 Adjacent sequences: A001491 A001492 A001493 * A001495 A001496 A001497 KEYWORD nonn,nice AUTHOR N. J. A. Sloane EXTENSIONS More terms from Jud McCranie, Dec 24 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 3 15:36 EDT 2023. Contains 363116 sequences. (Running on oeis4.)